Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Least Cost for Proximity Searching in Metric Spaces

  • Conference paper
Experimental Algorithms (WEA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4007))

Included in the following conference series:

Abstract

Proximity searching consists in retrieving from a database those elements that are similar to a query. As the distance is usually expensive to compute, the goal is to use as few distance computations as possible to satisfy queries. Indexes use precomputed distances among database elements to speed up queries. As such, a baseline is AESA, which stores all the distances among database objects, but has been unbeaten in query performance for 20 years. In this paper we show that it is possible to improve upon AESA by using a radically different method to select promising database elements to compare against the query. Our experiments show improvements of up to 75% in document databases. We also explore the usage of our method as a probabilistic algorithm that may lose relevant answers. On a database of faces where any exact algorithm must examine virtually all elements, our probabilistic version obtains 85% of the correct answers by scanning only 10% of the database.

Supported by CONACyT (Mexico) and Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, (Chile).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimension. In: Proc. 5th ACM-SIAM Symposium on Discrete Algorithms (SODA 1994), pp. 573–583 (1994)

    Google Scholar 

  2. Baeza-Yates, R., Ribeiro, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)

    Google Scholar 

  3. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces-index structures for improving the performance of multimedia databases. ACM Computing Surveys 33(3), 322–373 (2001)

    Article  Google Scholar 

  4. Bustos, B., Navarro, G.: Probabilistic proximity search algorithms based on compact partitions. Journal of Discrete Algorithms (JDA) 2(1), 115–134 (2003)

    Article  MathSciNet  Google Scholar 

  5. Chávez, E., Figueroa, K., Navarro, G.: Proximity searching in high dimensional spaces with a proximity preserving order. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 405–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of dimensionality in metric spaces. Information Processing Letters 85(1), 39–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Proximity searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)

    Article  Google Scholar 

  8. Ciaccia, P., Patella, M.: Searching in metric spaces with user-defined and approximate distances. ACM Trans. on Database Systems 27(4), 398–437 (2002)

    Article  Google Scholar 

  9. Clarkson, K.: Nearest neighbor queries in metric spaces. Discrete Computational Geometry 22(1), 63–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete Math 17(1), 134–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fredriksson, K.: Parallel and memory adaptive metric indexes. Pattern Recognition Letters (to appear)

    Google Scholar 

  12. Micó, L., Oncina, J., Carrasco, R.: A fast branch and bound nearest neighbour classifier in metric spaces. Pattern Recognition Letters 17, 731–739 (1996)

    Article  Google Scholar 

  13. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbor approximating and eliminating search (AESA) with linear preprocessing-time and memory requirements. Pattern Recognition Letters 15, 9–17 (1994)

    Article  Google Scholar 

  14. Navarrete, P., Ruiz-Del-Solar, J.: Analysis and comparison of eigenspace-based face recognition approaches. Int. Journal of Pattern Recognition and Artificial Intelligence 16(7), 817–830 (2002)

    Article  Google Scholar 

  15. Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 298–309. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing Journal 16(5), 295–306 (1998)

    Article  Google Scholar 

  17. Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recognition Letters 4, 145–157 (1986)

    Article  Google Scholar 

  18. Vilar, J.: Reducing the overhead of the AESA metric-space nearest neighbor searching algorithm. Information Processing Letters 56, 256–271 (1995)

    Article  MathSciNet  Google Scholar 

  19. White, D., Jain, R.: Algorithms and strategies for similarity retrieval. Technical Report VCL-96-101, Visual Computing Laboratory, U. of California (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueroa, K., Chávez, E., Navarro, G., Paredes, R. (2006). On the Least Cost for Proximity Searching in Metric Spaces. In: Àlvarez, C., Serna, M. (eds) Experimental Algorithms. WEA 2006. Lecture Notes in Computer Science, vol 4007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11764298_26

Download citation

  • DOI: https://doi.org/10.1007/11764298_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34597-8

  • Online ISBN: 978-3-540-34598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics