Nothing Special   »   [go: up one dir, main page]

Skip to main content

Support Vector Machine Approach for Retained Introns Prediction Using Sequence Features

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3973))

Included in the following conference series:

Abstract

It is estimated that 40-60% of human genes undergo alternative splicing. Currently, expressed sequence tags (ESTs) alignment and microarray analysis are the most efficient methods for large-scale detection of alternative splice events. Because of the inherent limitation of these methods, it is hard to detect retained introns using them. Thus, it is highly desirable to predict retained introns using only their own sequence information. In this paper, support vector machine is introduced to predict retained introns merely based on their own sequences. It can achieve a total accuracy of 98.54%. No other data, such as ESTs, are required for the prediction. The results indicate that support vector machine can achieve a reasonable acceptant prediction performance for retained introns with effective rejection of constitutive introns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Graveley, B.R.: Alternative Splicing: Increasing Diversity in the Proteomic World. Trends Genet. 17(2), 100–107 (2001)

    Article  Google Scholar 

  2. Modrek, B., Lee, C.: A Genomic View of Alternative Splicing. Nat. Genet. 30(1), 13–19 (2002)

    Article  Google Scholar 

  3. Galante, P.A., Sakabe, N.J., Kirschbaum-Slager, N., de Souza, S.J.: Detection and Evaluation of Intron Retention Events in the Human Transcriptome. RNA 10(5), 757–765 (2004)

    Article  Google Scholar 

  4. Michael, I.P., Kurlender, L., Memari, N., et al.: Intron Retention: a Common Splicing Event within the Human Kallikrein Gene Family. Clin. Chem. 51(3), 506–515 (2005)

    Article  Google Scholar 

  5. Johnson, J.M., Castle, J., Garrett-Engele, P., et al.: Genome-Wide Survey of Human Alternative Pre-mRNA Splicing with Exon Junction Microarrays. Science 302(5653), 2141–2144 (2003)

    Article  Google Scholar 

  6. Hiller, M., Huse, K., Platzer, M., Backofen, R.: Non-EST Based Prediction of Exon Skipping and Intron Retention Events Using Pfam Information. Nucleic Acids Res. 33(17), 5611–5621 (2005)

    Article  Google Scholar 

  7. Thanaraj, T.A., Stamm, S., Clark, F., Riethoven, J.J., Le Texier, V., Muilu, J.: ASD: the Alternative Splicing Database. Nucleic Acids Res. 32(Database Issue), D64–D69 (2004)

    Article  Google Scholar 

  8. Wen, F., Li, F., Xia, H.Y., Lu, X., Zhang, X.G., Li, Y.D.: The Impact of Very Short Alternative Splicing on Protein Structures and Functions in the Human Genome. Trends Genet. 20(5), 232–236 (2004)

    Article  Google Scholar 

  9. Norton, P.A.: Polypyrimidine Tract Sequences Direct Selection of Alternative Branch Sites and Influence Protein Binding. Nucleic Acids Res. 22(19), 3854–3860 (1994)

    Article  MathSciNet  Google Scholar 

  10. Kol, G., Lev-Maor, G., Ast, G.: Human-Mouse Comparative Analysis Reveals that Branch-Site Plasticity Contributes to Splicing Regulation. Hum. Mol. Genet. 14(11), 1559–1568 (2005)

    Article  Google Scholar 

  11. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Dror, G., Sorek, R., Shamir, R.: Accurate Identification of Alternatively Spliced Exons Using Support Vector Machine. Bioinformatics 21(7), 897–901 (2005)

    Article  Google Scholar 

  13. Joachims, T.: Making Large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, Ch.11, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, H., Bi, J., Li, Y. (2006). Support Vector Machine Approach for Retained Introns Prediction Using Sequence Features. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_96

Download citation

  • DOI: https://doi.org/10.1007/11760191_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34482-7

  • Online ISBN: 978-3-540-34483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics