Abstract
Hyper-redundant manipulator has more degrees of freedom than the least necessary to perform a given task, thus it has the features of overcoming conventional industrial robot’s limitation to carry out a designated difficult task. When the manipulator carries out the missions such as brushing or writing on a surface, drilling or inspection in a hole, the end-effector of the manipulator usually has both position and orientation requirement. Effective control of the hyper-redundant manipulator with such constrained end-effector is difficult for its redundancy. In this paper, a novel approach based on RBF neural network has been proposed to kinematically control the hyper-redundant manipulator. This technique, using variable regular polygon and RBF neural networks models, is completely capable of solving the control problem of a planar hyper-redundant manipulator with any number of links following any desired direction and path. With the shape transformation of variable regular polygon, the manipulator’s configuration changes accordingly and moves actively to perform the tasks. Compared with other methods to our knowledge, this technique has such superiorities as fewer control parameters and higher precision. Simulations have demonstrated that this control technique is available and effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xiong, Y.: Robotics. China Mechanical Press (in Chinese)(1993)
Zhang, Y., Wang, J., Xu, Y.: A dual neural network for bi-criteria kinematic control redundant manipulators. IEEE Transactions on Robotics and Automation 18(6), 923–931 (2002)
Nanayakkara, T., Watanabe, K., Kiguchi, K., et al.: Evolutionary structured RBF neural network based control of a seven-link redundant manipulator. In: IEEE Society (eds.) Proceedings of the 39th SICE Annual Conference, Saga Univ., pp. 148–153 (2000)
Chirikjian, G.S., Burdick, J.W.: The Kinematics of Hyper-Redundant Robot Locomotion. IEEE Transactions on Robotics and Automation 11(6), 781–793 (1995)
Ma, S., Konno, M.: An Obstacle Avoidance Scheme for Hyper-redundant Manipulators –Global Motion Planning in Posture Space. In: Harrigan, R., Jamshidi, M. (eds.) Proceedings of IEEE ICRA, Albuquerque, pp. 161–166 (1997)
Kobyashi, H., Ohtake, S.: Shape Control of Hyper Redundant Manipulator. In: Fukuda, T., Arimoto, S. (eds.) Proceedings of IEEE ICRA, Nagoya, pp. 2803–2808 (1995)
Moody, J., Darken, C.: Learning with Localized Receptive Fields. In: Touretzky, D., Hin-ton, G., Sejnowski, T. (eds.) Proceedings of Connectionist Models Summer School, San Mateo, pp. 133–143 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, J., Wang, Y., Ma, S., Li, B. (2006). RBF Neural Network Based Shape Control of Hyper-redundant Manipulator with Constrained End-Effector. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_168
Download citation
DOI: https://doi.org/10.1007/11760023_168
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34437-7
Online ISBN: 978-3-540-34438-4
eBook Packages: Computer ScienceComputer Science (R0)