Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning with Single Quadratic Integrate-and-Fire Neuron

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

In this paper, a learning algorithm for a single Quadratic Integrate-and-Fire Neuron (QIFN) is proposed and tested for various applications in which a multilayer perceptron neural network is conventionally used. It is found that a single QIFN is sufficient for the applications that require a number of neurons in different layers of a conventional neural network. Several benchmark and real-life problems of classification and function-approximation have been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McKenna, T., Davis, J., Zornetzer, S.F. (eds.): Single Neuron Computation. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  2. Anderson, J.A., Rosenfeld, E. (eds.): Neurocomputing:  Foundations of Research. MIT Press, Cambridge (1960)

    Google Scholar 

  3. Scholles, M., Hosticka, B.J., Kesper, M., Richert, P., Schwarz, M.: Biologically Inspired Artificial Neurons: Modeling and Applications. In: Proceedings of International Joint Conference on Neural Networks, vol. 3, pp. 2300–2303 (1993)

    Google Scholar 

  4. Iannella, N.,, B.A.: A Spiking Neural Network Architecture for Nonlinear Function Approximation. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 139–146 (1999)

    Google Scholar 

  5. Yadav, A., Mishra, D., Ray, S., Yadav, R.N., Kalra, P.K.: Learning with Single Integrate-and-Fire Neuron. In: Proceedings of International Joint Conference on Neural Network (2005)

    Google Scholar 

  6. Freeman, W.J.: Why Neural Networks Don t Yet Fly: Inquiry into the Neurodynamics of Biological Intelligence. In: Proceedings of IEEE International Conference on Neural Networks, vol. 2, pp. 1–7 (1988)

    Google Scholar 

  7. Hebb, D.: Organization of Behavior. John Weiley and Sons, New York (1949)

    Google Scholar 

  8. Widrow, B., Steams, S.: Adaptive Signal Processing. Prentice-Hall, Upper Saddle River (1985)

    MATH  Google Scholar 

  9. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)

    Google Scholar 

  10. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997)

    Google Scholar 

  11. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: An Introduction. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  12. McCulloch, W.S., Pitts, W.S.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Mathematical Biophysics 5, 18–27 (1943)

    Google Scholar 

  13. Sinha, M., Chaturvedi, D.K., Kalra, P.K.: Development of Flexible Neural Network. Journal of The Institution of Engineers (India) 83 (2002)

    Google Scholar 

  14. Feng, J., Buxton, H., Deng, Y.C.: Training the Integrate-and-Fire Model with the Informax Principle I. Journal of Physics–A 35, 2379–2394 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Feng, J., Sun, Y., Buxton, H., Wei, G.: Training Integrate-and-Fire Neurons with the Informax Principle II. IEEE Trans. on Neural Networks 14(2), 326–336 (2003)

    Article  Google Scholar 

  16. Feng, J., Li, G.: Neuronal Models with Current Inputs. Journal of Physics–A 34, 1649–1664 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Liu, S.C., Douglas, R.: Temporal Coding in a Silicon Network of Integrate-and-Fire Neurons. IEEE Trans. on Neural Networks 15(5), 1305–1314 (2004)

    Article  Google Scholar 

  18. Ermentrout, G.B.: Type I Membranes, Phase Resetting Curves, and Synchrony. Neural Computation 8(5), 979–1001 (1996)

    Article  Google Scholar 

  19. Ermentrout, G.B., Kopell, N.: Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation. SIAM Journal of Applied Mathematics 46(2), 233–253 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic Dynamics in Neuronal Networks I. The Journal of Neurophysiology 83(2), 808–827 (2000)

    Google Scholar 

  21. http://www.cs.colostate.edu/eeg/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mishra, D., Yadav, A., Kalra, P.K. (2006). Learning with Single Quadratic Integrate-and-Fire Neuron. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_63

Download citation

  • DOI: https://doi.org/10.1007/11759966_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics