Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-level Independent Component Analysis

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

  • 88 Accesses

Abstract

This paper presents a new method which uses multi-level density estimation technique to generate score function in ICA (independent Component Analysis). Score function is very closely related with density function in information theoretic ICA. We tried to solve mismatch of marginal densities by controlling the number of kernels. Also, we insert a constraint that can satisfy sufficient condition to guarantee asymptotic stability. Multi-level ICA uses kernel density estimation method in order to derive differential equation of source adaptively score function by original signals. To increase speed of kernel density estimation, we used FFT algorithm after changing density formula to convolution form. Proposed multi-level score function generation method reduces estimate error which is density difference between recovered signals and original signals. We estimate density function more similar to original signals compared with existent other algorithms in blind source separation problem and get improved performance in the SNR measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P.: Independent Component Analysis, A New Concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  3. Amari, S., Cichocki, A., Yang, H.H.: A New Learning Algorithm for Blind Signal Separation. In: Touretzky, D., Mozer, M. (eds.) Advances in Neural Information Processing systems, vol. 8, pp. 757–763 (1996)

    Google Scholar 

  4. Cardoso, J.F.: Blind Signal Separation, Statistical Principles. Proc. IEEE Special Issue on Blind Identification and Estimation 9(10), 2009–2025 (1998)

    Google Scholar 

  5. Lee, T.-W., Girloami, M., Sejnowski, T.J.: Independent Component Analysis Using Extended Infomax Algorithm for Mixed SubGausssian and SuperGaussian Sources. Neural Computation 1(2), 417–441 (1999)

    Article  Google Scholar 

  6. Hyvarinen, A.: Survey on Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  7. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York (1995)

    Google Scholar 

  8. Vlassis, N., Motomura., Y.: Efficient Source Adaptivity in Independent Component Analysis. IEEE Trans. Neural Networks 12(3), 559–566 (2001)

    Article  Google Scholar 

  9. Fiori, S.: Blind Signal Processing by the Adaptive Activation Function Neurons. Neural Networks 13(6), 597–611 (2000)

    Article  Google Scholar 

  10. Boscolo, R., Pan, H.: Independent Component Analysis Based on Nonparametric Density Estimation. IEEE Trans. on Neural Networks 15(1), 55–65 (2004)

    Article  Google Scholar 

  11. Kim, W.-M., Lee, H.-S.: An Efficient Score Function Generation Algorithm with Information Maximization. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 760–768. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, W.M., Park, C.H., Lee, H.S. (2006). Multi-level Independent Component Analysis. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_161

Download citation

  • DOI: https://doi.org/10.1007/11759966_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics