Abstract
The paper describes how one can use commodity graphics cards (GPUs) as a high-performance parallel computer to simulate the dynamics of ideal gases in two and three spatial dimensions. The dynamics is described by the Euler equations, and numerical approximations are computed using state-of-the-art high-resolution finite-volume schemes. These schemes are based upon an explicit time discretisation and are therefore ideal candidates for parallel implementation.
Chapter PDF
Similar content being viewed by others
References
Hagen, T.R., Hjelmervik, J.M., Lie, K.-A., Natvig, J.R., Henriksen, M.O.: Visual simulation of shallow-water waves. Simul. Model. Pract. Theory 13, 716–726 (2005)
Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001)
LeVeque, R.: Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)
Shu, C.-W.: Total-variation-diminishing time discretisations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hagen, T.R., Lie, KA., Natvig, J.R. (2006). Solving the Euler Equations on Graphics Processing Units. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758549_34
Download citation
DOI: https://doi.org/10.1007/11758549_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34385-1
Online ISBN: 978-3-540-34386-8
eBook Packages: Computer ScienceComputer Science (R0)