Abstract
Most of the biological studies have embraced statistical approaches to make inferences. It is common to have several independent experiments to test the same null hypothesis. The goal of research on pooling evidence is to combine the results of these tests to ask if there is evidence from the collection of studies to reject the null hypothesis. In this study, we evaluated four different pooling techniques (Fisher, Logit, Stouffer and Liptak) to combine the evidence from independent microarray experiments in order to identify cell cycle-regulated genes. We were able to identify a better set of cell cycle-regulated genes using the pooling techniques based on our benchmark study on budding yeast (Saccharomyces cerevisiae). Our gene ontology study on time series data of both the budding yeast and the fission yeast (Schizosaccharomyces pombe) showed that the GO terms that are related to cell cycle are significantly enriched in the cell cycle-regulated genes identified using pooling techniques.
Chapter PDF
Similar content being viewed by others
Keywords
- Fission Yeast
- Schizosaccharomyces Pombe
- Sequence Homology Search
- Gene Ontology Information
- Logistic Random Variable
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Fisher, R.A.: Statistical Methods for Research Workers, 14th edn. Oliver and Boyd, Edinburgh (1932)
George, E.O., Mudholkar, G.S.: On the Convolution of Logistic Random Variables. Metrika 30, 1–14 (1983)
Liptak, T.: On the combination of independent tests. Magyar Tud. Akad. Mat. Kutato Int. Kozl 3, 171–197 (1958)
Stouffer, S.A., Suchman, E.A., Devinney, L.C., Star, S.A., Williams, R.M.J.: The American Soldier. Adjustment during army life, vol. 1. Princeton University Press, Princeton (1949)
Bailey, T.L., Gribskov, M.: Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14(1), 48–54 (1998)
Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C.J., Burns, G., Hayles, J., Brazma, A., Nurse, P., Bahler, J.: Periodic gene expression program of the fission yeast. Cell cycle 36(8), 809–817 (2004)
Cho, R.J., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)
Oliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., Skiena, S., Futcher, B., Leatherwood, J.: The Cell Cycle Regulated Genes of Schizosaccharomyces pombe. PLoS Biology 3(7), e225 (2005)
Hartwell, L., Culotti, J., Reid, B.: Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Nat. Acad. Sci. 66, 352–359 (1970)
Johansson, D., Lindgren, P., Berglund, A.: A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription. Bioinformatics 19(4), 467–473 (2003)
Zhao, L.P., Prentice, R., Breeden, L.: Statistical modeling of large microarray data sets to identify stimulus-response profiles. Proc. Natl. Acad. Sci. 98, 5631–5636 (2001)
Lu, X., Zhang, W., Qin, Z.S., Kwast, K.E., Liu, J.S.: Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucl. Acids Res. 32(2), 447–455 (2004)
Wichert, S., Fokianos, K., Strimmer, K.: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20(1), 5–20 (2004)
de Lichtenberg, U., Jensen, L.J., Fausboll, A., Jensen, T.S., Bork, P., Brunak, S.: Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics 21(7), 1164–1171 (2005)
Bailey, T.L., Grundy, W.N.: Classifying proteins by family using the product of correlated p-values. In: Proceedings of the Third international conference on computational molecular biology (RECOM 1999) (1999)
Zeeberg, B.R., Feng, W., Wang, G., Wang, M.D., Fojo, A.T., Sunshine, M., Narasimhan, S., Kane, D.W., Reinhold, W.C., Lababidi, S., Bussey, K.J., Riss, J., Barrett, J.C., Weinstein, J.N.: GoMiner: A Resource for Biological Interpretation of Genomic and Proteomic Data. Genome Biology 4(4), R28 (2003)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289–300 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, G., Milledge, T., George, E.O., Narasimhan, G. (2006). Pooling Evidence to Identify Cell Cycle–Regulated Genes. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758525_94
Download citation
DOI: https://doi.org/10.1007/11758525_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34381-3
Online ISBN: 978-3-540-34382-0
eBook Packages: Computer ScienceComputer Science (R0)