Abstract
This paper considers the open problem whether there exists a finite-state hybrid output feedback control to asymptotically stabilize a second-order linear dynamic system. More precisely, for second-order linear time-invariant systems which are not stabilizable via a single static output feedback, we find two different output feedback gains and a switching law orchestrating the feedback gains such that the closed-loop system is asymptotically stable.
Chapter PDF
Similar content being viewed by others
Keywords
- Output Feedback
- Static Output Feedback
- Switch Linear System
- Piecewise Linear System
- Control System Matrice
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Syrmos, V.L., Abdallah, C.T., Dorato, P., Grigoriadis, K.: Static output feedback: a survey. Automatica 33, 125–137 (1997)
Artstein, Z.: Examples of stabilization with hybrid feedback. In: Alur, R., et al. (eds.) Hybrid Systems III: Verification and Control, pp. 173–185 (1996)
Liberzon, D.: Stabilizing a linear system with finite-state hybrid output feedback. In: Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation, pp. 176–183 (1999)
Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Systems Magazine 19, 59–70 (1999)
Hu, B., Zhai, G., Michel, A.N.: Hybrid output feedback stabilization of two-dimensional linear control systems. In: Proceedings of the 2000 American Control Conference, pp. 2184–2188 (2000)
Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control 43, 475–482 (1998)
DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE 88, 1069–1082 (2000)
Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43, 555–559 (1998)
Michel, A.N.: Recent trends in the stability analysis of hybrid dynamical systems. IEEE Trans. Circuit and Systems-I: Fundamental Theory and Applications 45, 120–134 (1999)
Morse, A.S.: Control using logic-based switching. In: Isidori, A. (ed.) Trends in Control: a European Perspective, pp. 69–113. Springer, Berlin (1995)
Peleties, P., DeCarlo, R.: Asymptotic stability of m-switched systems using Lyapunov-like functions. In: Proceedings of the 1991 American Control Conference, pp. 1679–1684 (1991)
Litsyn, E., Nepomnyashchikh, Y.V., Ponosov, A.: Stabilization of linear differential systems via hybrid feedback controls. SIAM J. Control Optim. 38, 1468–1480 (2000)
Xu, X., Antsaklis, P.J.: Design of stabilizing control laws for second-order switched systems. In: Proceedings of the 14th IFAC World Congress, vol. C, pp. 181–186 (1999)
Xu, X., Antsaklis, P.J.: Stabilization of second-order LTI switched systems. Int. J. Control 73, 1261–1279 (2000)
Sastry, S.: Nonlinear Systems. Springer, New York (1999)
Zhang, L., Chen, Y., Cui, P.: Stabilization of a Class of Switched Linear Systems, Nonlinear Analysis: Theory, Methods and Applications. Special Issue on Hybrid Systems and Applications 62, 1527–1535 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, L., Chen, Y., Cui, P. (2006). Stabilizing Second-Order Linear Dynamic Systems Via Hybrid Output Feedback Controls. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758525_64
Download citation
DOI: https://doi.org/10.1007/11758525_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34381-3
Online ISBN: 978-3-540-34382-0
eBook Packages: Computer ScienceComputer Science (R0)