Abstract
We present newly implemented functions in SyNRAC, which is a Maple package for solving real algebraic constraints derived from various engineering problems. The current version of SyNRAC has added quantifier elimination (QE) by cylindrical algebraic decomposition (CAD), a general QE procedure. We also show a visualization tool for representing the possble region of an output quantifier-free formula for the two-dimensional case.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Anai, H., Yanami, H.: syNRAC: A maple-package for solving real algebraic constraints. In: Sloot, P.M.A., et al. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 828–837. Springer, Heidelberg (2003)
Yanami, H., Anai, H.: Development of syNRAC—formula description and new functions. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 286–294. Springer, Heidelberg (2004)
Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic Computation 5, 3–27 (1988)
Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal Special issue on computational quantifier elimination 36, 450–462 (1993)
Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8, 85–101 (1997)
Hong, H.: Quantifier elimination for formulas constrained by quadratic equations. In: Bronstein, M. (ed.) Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 1993), Kiev, Ukraine, pp. 264–2747. ACM Press, New York (1993)
González-Vega, L.: A combinatorial algorithm solving some quantifier elimination problems. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 365–375. Springer, New York (1998)
Weispfenning, V.: Applying quantifier elimination to problems in simulation and optimization. Technical Report MIP-9607, FMI, Universitát Passau, D-94030 Passau, Germany, To appear in the Journal of Symbolic Computation (1996)
Sturm, T., Weispfenning, V.: Rounding and blending of solids by a real elimination method. In: Sydow, A. (ed.) Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling, and Applied Mathematics (IMACS 1997) IMACS, vol. 2, pp. 727–732. Wissenschaft & Technik Verlag, Berlin (1997)
Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. In: Matzat, B.H., Greuel, G.M., Hiss, G. (eds.) Algorithmic Algebra and Number Theory, pp. 221–247. Springer, Berlin (1998)
González-Vega, L.: Applying quantifier elimination to the Birkhoff interpolation problem. Journal of Symbolic Computation (1996) (to appear)
Anai, H., Hara, S.: Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In: Proceedings of American Control Conference 2000, pp. 1312–1316 (2000)
Anai, H., Yanami, H., Sakabe, K., Hara, S.: Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a cacsd toolbox (invited paper). In: Proceedings of CCA/ISIC/CACSD 2004, Taipei, Taiwan, pp. 1540–1545 (2004)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 85–121. Springer, New York (1998)
Hong, H.: An improvement of the projection operator in cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 166–173. Springer, New York (1998)
McCallum, S.: An improved projection operation for cylindrical algebraic decomposition. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 242–268. Springer, New York (1998)
Brown, C.W.: Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Computation 32, 447–465 (2001)
Anai, H., Yokoyama, K.: Numerical cylindrical algebraic decomposition with certificated reconstruction. In: Proceedings of 11th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, Fukuoka, Japan, vol. 31 (2004)
Duval, D.: Algebraic numbers: an example of dynamic evaluation. Journal of Symbolic Computation 18, 429–445 (1994)
Duval, D., González-Vega, L.: Dynamic evaluation and real closure. Math. Comput. Simulation 42(4-6), 551–560 (1996)
Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. In: Selected papers presented at the international IMACS symposium on Symbolic computation, new trends and developments, pp. 571–582. Elsevier Science Publishers B. V., /Springer, Amsterdam (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yanami, H., Anai, H. (2006). Development of SyNRAC . In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758525_62
Download citation
DOI: https://doi.org/10.1007/11758525_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34381-3
Online ISBN: 978-3-540-34382-0
eBook Packages: Computer ScienceComputer Science (R0)