Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We propose two algorithms achieving generalized arc consistency for the soft global cardinality constraint with variable-based violation and with value-based violation. They are based on graph theory and their complexity is \(O(\sqrt{n}m)\) where n is the number of variables and m is the sum of the cardinalities of the domains. They improve previous algorithms that ran respectively in O(n(m+nlog n)) and O((n+k)(m+nlog n)) where k is the cardinality of the union of the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1131–1136 (1993)

    Google Scholar 

  3. Fargier, H., Lang, J., Schiex, T.: Selecting preferred solutions in fuzzy constraint satisfaction problems. In: Proceedings of the First European Congress on Fuzzy and Intelligent Technologies (EUFIT 1993), Aachen, vol. 3, pp. 1128–1134 (1993)

    Google Scholar 

  4. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On Global Warming: Flow-Based Soft Global Constraints. Journal of Heuristics (to appear)

    Google Scholar 

  5. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Larrosa, J.: Node and Arc Consistency in Weighted CSP. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 48–53. AAAI Press, Menlo Park (2002)

    Google Scholar 

  7. Larrosa, J., Schiex, T.: In the Quest of the best form of local consistency for Weighted CSP. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 239–244. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  8. Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved Algorithms for the Global Cardinality Constraint. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 542–556. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Petit, T., Régin, J.-C., Bessière, C.: Specific Filtering Algorithms for Over Constrained Problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Régin, J.-C.: Arc Consistency for Global Cardinality Constraints with Costs. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 390–404. Springer, Heidelberg (1999)

    Google Scholar 

  11. Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI 1996), pp. 209–215 (1996)

    Google Scholar 

  12. Schiex, T.: Possibilistic Constraint Satisfaction Problems or “How to handle soft constraints?”. In: Proceedings of the 8th Annual Conference on Uncertainty in Artificial Intelligence, pp. 268–275. Morgan Kaufmann, San Francisco (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zanarini, A., Milano, M., Pesant, G. (2006). Improved Algorithm for the Soft Global Cardinality Constraint. In: Beck, J.C., Smith, B.M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2006. Lecture Notes in Computer Science, vol 3990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11757375_23

Download citation

  • DOI: https://doi.org/10.1007/11757375_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34306-6

  • Online ISBN: 978-3-540-34307-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics