Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

Recently, Linear Programming (LP)-based relaxations have been shown promising in boosting the performance of exact MAX-SAT solvers. We compare Semidefinite Programming (SDP) based relaxations with LP relaxations for MAX-2-SAT. We will show how SDP relaxations are surprisingly powerful, providing much tighter bounds than LP relaxations, across different constrainedness regions. SDP relaxations can also be computed very efficiently, thus quickly providing tight lower and upper bounds on the optimal solution. We also show the effectiveness of SDP relaxations in providing heuristic guidance for iterative variable setting, significantly more accurate than the guidance based on LP relaxations. SDP allows us to set up to around 80% of the variables without degrading the optimal solution, while setting a single variable based on the LP relaxation generally degrades the global optimal solution in the overconstrained area. Our results therefore show that SDP relaxations may further boost exact MAX-SAT solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hooker, J.N., Fedjiki, C.: Branch-and-cut solution of inference problems in propositional logic. Annals of Math. and Artificial Intelligence 1 (1990)

    Google Scholar 

  2. Warners, J.: Nonlinear approaches to satisfiability problems. PhD thesis, Technische Universiteit Eindhoven (1999)

    Google Scholar 

  3. Xing, Z., Zhang, W.: Maxsolver: An efficient exact algorithm for (weighted) maximum satisfiability. Artificial Intelligence 164(1-2), 47–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for MAX-SAT and weighted MAX-SAT. Satisfiability Problem: Theory and Applications 35, 519–536 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM Journal on Optimization 5(1), 13–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goemans, M., Rendl, F.: Combinatorial Optimization. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, pp. 343–360. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  7. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)

    Book  MATH  Google Scholar 

  8. Goemans, M., Williamson, D.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S.: (Editor) Approximation algorithms for NP-Hard problems. PWS Publishing Company (1997)

    Google Scholar 

  10. Feige, U., Goemans, M.: Approximating the value of two prover proof systems, with applications to max2sat and max dicut. In: Proceedings of the 3rd Israel Symposium on Theory of Computing and Systems (1995)

    Google Scholar 

  11. Garey, M., Johnson, D.: Computers and Intractibility. Freeman, New York (1979)

    Google Scholar 

  12. Chvátal, V., Reed, B.: Mike gets some (the odds are on his side). In: 33th Annual Symposium of Foundations of Computer Science, pp. 620–627 (1992)

    Google Scholar 

  13. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Anjos, M.: Semidefinite optimization approaches for satisfiability and maximum-satisfiability problems. Journal on Satisfiability, Boolean Modeling and Computation 1, 1–47 (2005)

    MATH  Google Scholar 

  15. de Klerk, E., van Maaren, H.: On semidefinite programming relaxation of 2+p-sat. Annals of Math. and Artificial Intelligence 37 (2003)

    Google Scholar 

  16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Selman, B.: Mwff - a program for generating random MAX k-SAT instances (1993)

    Google Scholar 

  18. Borchers, B.: A C Library for Semidefinite Programming. Optimization Methods and Software 11(1), 613–623 (1999), http://www.nmt.edu/~borchers/csdp.html

    Article  MathSciNet  MATH  Google Scholar 

  19. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, C.P., van Hoeve, WJ., Leahu, L. (2006). The Power of Semidefinite Programming Relaxations for MAX-SAT. In: Beck, J.C., Smith, B.M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2006. Lecture Notes in Computer Science, vol 3990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11757375_10

Download citation

  • DOI: https://doi.org/10.1007/11757375_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34306-6

  • Online ISBN: 978-3-540-34307-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics