Nothing Special   »   [go: up one dir, main page]

Skip to main content

3D Facial Recognition Using Eigenface and Cascade Fuzzy Neural Networks: Normalized Facial Image Approach

  • Conference paper
Computer Science – Theory and Applications (CSR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3967))

Included in the following conference series:

Abstract

The depth information in the face represents personal features in detail. In particular, the surface curvatures extracted from the face contain the most important personal facial information. The principal component analysis using the surface curvature reduces the data dimensions with less degradation of original information, and the proposed 3D face recognition algorithm collaborated into them. The recognition for the eigenface referred from the maximum and minimum curvatures is performed. To classify the faces, the cascade architectures of fuzzy neural networks, which can guarantee a high recognition rate as well as parsimonious knowledge base, are considered. Experimental results on a 46 person data set of 3D images demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, L.C., Halici, U., Hayashi, I., Lee, S.B.: Intelligent biometric techniques in fingerprint and face recognition. CRC Press, Boca Raton (1999)

    Google Scholar 

  2. 4D Culture, http://www.4dculture.com

  3. Cyberware, http://www.cyberware.com

  4. Chellapa, R., et al.: Human and Machine Recognition of Faces: A Survey. UMCP CS-TR-3399 (1994)

    Google Scholar 

  5. Hallinan, P.L., Gordon, G.G., Yuille, A.L., Giblin, P., Mumford, D.: Two and three dimensional pattern of the face. A K Peters Ltd. (1999)

    Google Scholar 

  6. Grob, M.: Visual computing. Springer, Heidelberg (1994)

    Google Scholar 

  7. Nikolaidis, A., Pitas, I.: Facial feature extraction and pose determination. Pattern Recognition 33, 1783–1791 (2000)

    Article  Google Scholar 

  8. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognition 33, 1771–1782 (2000)

    Article  Google Scholar 

  9. Chua, C.S., Han, F., Ho, Y.K.: 3D Human Face Recognition Using Point Signature. In: Proc. of the 4th ICAFGR (2000)

    Google Scholar 

  10. Tanaka, H.T., Ikeda, M., Chiaki, H.: Curvature-based face surface recognition using spherial correlation. In: Proc. of the 3rd IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 372–377 (1998)

    Google Scholar 

  11. Gordon, G.G.: Face Recognition based on depth and curvature feature. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp. 808–810 (1992)

    Google Scholar 

  12. Chellapa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of the IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  13. Lee, J.C., Milios, E.: Matching range image of human faces. In: Proc. of the 3rd Int. Conf. on Computer Vision, pp. 722–726 (1990)

    Google Scholar 

  14. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  15. Hesher, C., Srivastava, A., Erlebacher, G.: Principal Component Analysis of Range Images for Facial Recognition. In: Proc. of CISST (2002)

    Google Scholar 

  16. Zhao, Z.Q., Huang, D.S., Sun, B.Y.: Human face recognition based on multi-features using neural networks committee. Pattern Recognition Letters 25, 1351–1358 (2004)

    Article  Google Scholar 

  17. Pedrycz, W., Reformat, M., Han, C.W.: Cascade architectures of fuzzy neural networks. Fuzzy Optimization and Decision Making 3, 5–37 (2004)

    Article  MATH  Google Scholar 

  18. Han, C. W., Pedrycz, W.: A new genetic optimization method and its applications. International Journal of Approximate Reasoning (submitted )

    Google Scholar 

  19. Peet, F.G., Sahota, T.S.: Surface Curvature as a Measure of Image Texture. IEEE Trans. PAMI 7(6), 734–738 (1985)

    Article  Google Scholar 

  20. Lee, Y., Park, G., Shim, J., Yi, T.: Face Recognition from 3D Face Profile using Hausdorff Distance. In: Proc. of PRIA-6-2002 (2002)

    Google Scholar 

  21. Lee, Y.: 3D Face Recognition Using Longitudinal Section and Transection. In: Proc. of DICTA-2003 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, YH., Han, CW. (2006). 3D Facial Recognition Using Eigenface and Cascade Fuzzy Neural Networks: Normalized Facial Image Approach. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_46

Download citation

  • DOI: https://doi.org/10.1007/11753728_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34166-6

  • Online ISBN: 978-3-540-34168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics