Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Direct Methods for Lexicographic Min-Max Optimization

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

Abstract

The approach called the Lexicographic Min-Max (LMM) optimization depends on searching for solutions minimal according to the lex-max order on a multidimensional outcome space. LMM is a refinement of the standard Min-Max optimization, but in the former, in addition to the largest outcome, we minimize also the second largest outcome (provided that the largest one remains as small as possible), minimize the third largest (provided that the two largest remain as small as possible), and so on. The necessity of point-wise ordering of outcomes within the lexicographic optimization scheme causes that the LMM problem is hard to implement. For convex problems it is possible to use iterative algorithms solving a sequence of properly defined Min-Max problems by eliminating some blocked outcomes. In general, it may not exist any blocked outcome thus disabling possibility of iterative Min-Max processing. In this paper we analyze two alternative optimization models allowing to form lexicographic sequential procedures for various nonconvex (possibly discrete) LMM problems. Both the approaches are based on sequential optimization of directly defined artificial criteria. The criteria can be introduced into the original model with some auxiliary variables and linear inequalities thus the methods are easily implementable.

The research was supported by the Ministry of Science and Information Society Technologies under grant 3T11C 005 27 “Models and Algorithms for Efficient and Fair Resource Allocation in Complex Systems.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behringer, F.A.: A simplex based algorithm for the lexicographically extended linear maxmin problem. Eur. J. Opnl. Res. 7, 274–283 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  3. Burkard, R.E., Rendl, F.: Lexicographic bottleneck problems. Oper. Res. Let. 10, 303–308 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Della Croce, F., Paschos, V.T., Tsoukias, A.: An improved general procedure for lexicographic bottleneck problem. Oper. Res. Let. 24, 187–194 (1999)

    Article  MATH  Google Scholar 

  5. Denda, R., Banchs, A., Effelsberg, W.: The fairness challenge in computer networks. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds.) QofIS 2000. LNCS, vol. 1922, pp. 208–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Dresher, M.: Games of Strategy. Prentice-Hall, Englewood Cliffs (1961)

    MATH  Google Scholar 

  7. Dubois, D., Fortemps, P., Pirlot, M., Prade, H.: Leximin optimality and fuzzy set-theoretic operations. Eur. J. Opnl. Res. 130, 20–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ehrgott, M.: Discrete decision problems, multiple criteria optimization classes and lexicographic max-ordering. In: Stewart, T.J., van den Honert, R.C. (eds.) Trends in Multicriteria Decision Making, pp. 31–44. Springer, Berlin (1998)

    Google Scholar 

  9. Klein, R.S., Luss, H., Smith, D.R.: A lexicographic minimax algorithm for multiperiod resource allocation. Math. Progr. 55, 213–234 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kostreva, M.M., Ogryczak, W.: Linear optimization with multiple equitable criteria. RAIRO Oper. Res. 33, 275–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Luss, H.: On equitable resource allocation problems: A lexicographic minimax approach. Oper. Res. 47, 361–378 (1999)

    Article  MATH  Google Scholar 

  12. Marchi, E., Oviedo, J.A.: Lexicographic optimality in the multiple objective linear programming: the nucleolar solution. Eur. J. Opnl. Res. 57, 355–359 (1992)

    Article  MATH  Google Scholar 

  13. Ogryczak, W.: Linear and Discrete Optimization with Multiple Criteria: Preference Models and Applications to Decision Support (in Polish). Warsaw Univ. Press, Warsaw (1997)

    Google Scholar 

  14. Ogryczak, W.: On the lexicographic minimax approach to location problems. Eur. J. Opnl. Res. 100, 566–585 (1997)

    Article  MATH  Google Scholar 

  15. Ogryczak, W.: Multiple criteria optimization and decisions under risk. Control & Cyber 31, 975–1003 (2002)

    MATH  Google Scholar 

  16. Ogryczak, W., Pióro, M., Tomaszewski, A.: Telecommunication network design and max-min optimization problem. J. Telecom. Info. Tech. 3/05, 43–56 (2005)

    Google Scholar 

  17. Ogryczak, W., Śliwiński, T.: On equitable approaches to resource allocation problems: the conditional minimax solution, J. Telecom. Info. Tech. 3/02, 40–48 (2002)

    Google Scholar 

  18. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Opnl. Res. 148, 80–91 (2003)

    Article  MATH  Google Scholar 

  19. Ogryczak, W., Tamir, A.: Minimizing the sum of the k largest functions in linear time. Inform. Proc. Let. 85, 117–122 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pióro, M., Medhi, D.: Routing, Flow and Capacity Design in Communication and Computer Networks. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  21. Potters, J.A.M., Tijs, S.H.: The nucleolus of a matrix game and other nucleoli. Math. of Oper. Res. 17, 164–174 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rawls, J.: The Theory of Justice. Harvard University Press, Cambridge (1971)

    Google Scholar 

  23. Rice, J.R.: Tschebyscheff approximation in a compact metric space. Bull. Amer. Math. Soc. 68, 405–410 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yager, R.R.: On the analytic representation of the Leximin ordering and its application to flexible constraint propagation. Eur. J. Opnl. Res. 102, 176–192 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ogryczak, W., Śliwiński, T. (2006). On Direct Methods for Lexicographic Min-Max Optimization. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_85

Download citation

  • DOI: https://doi.org/10.1007/11751595_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics