Nothing Special   »   [go: up one dir, main page]

Skip to main content

C-TOBI-Based Pitch Accent Prediction Using Maximum-Entropy Model

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

  • 1462 Accesses

Abstract

We model Chinese pitch accent prediction as a classification problem with six C-ToBI pitch accent types, and apply conditional Maximum Entropy (ME) classification to this problem. We acquire multiple levels of linguistic knowledge from natural language processing to make well-integrated features for ME framework. Five kinds of features were used to represent various linguistic constraints including phonetic features, POS tag features, phrase break features, position features, and length features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, A.L., Pietra, S.A.D., Pietra, V.J.D.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1) (1996)

    Google Scholar 

  2. Black, A.W., Hunt, A.J.: Generating F0 contours from ToBI labels using linear regression. In: Proceeding of the international conference on spoken language processing(ICSLP), CSLI (1996)

    Google Scholar 

  3. Chen, S.F., Rosenfeld, R.: A Gaussian Prior for Smoothing Maximum Entropy Models. Technical Report CMU-CS-99-108 (1999)

    Google Scholar 

  4. Gregory, M.L., Altun, Y.: Using conditional random fields to predict pitch accents in conversational speech, ACL (2004)

    Google Scholar 

  5. Ha, J.-H., Zheng, Y., Lee, G.G.: Chinese segmentation and POS-tagging by automatic POS dictionary training. In: Proceedings of the 14th Conference of Korean and Korean Information Processing (2002)

    Google Scholar 

  6. Ha, J.-H., Zheng, Y., Lee, G.G.: High speed unknown word prediction using support vector machine for Chinese Text-to-Speech systems. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, pp. 509–517. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In: Proceedings of CoNLL 2002, Taipei, Taiwan, pp. 49–55 (2002)

    Google Scholar 

  8. Sun, X.: Pitch accent prediction using ensemble machine learning. In: ICSLP 2002 (2002)

    Google Scholar 

  9. Zhang, H., Yu, J.S., Zhan, W.D., Yu, S.W.: Disambiguation of Chinese polyphonic characters. In: International Workshop on Multimedia Annotation (2001)

    Google Scholar 

  10. Le, Z.: Maximum entropy modeling toolkit for python and C++ (2003), http://www.nlplab.cn/zhangle/

  11. Zheng, Y., Kim, B., Lee, G.G.: Using multiple linguistic features for Mandarin phrase break prediction in maximum-entropy classification framework. In: ICSLP 2004 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, B., Lee, G.G. (2006). C-TOBI-Based Pitch Accent Prediction Using Maximum-Entropy Model. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_3

Download citation

  • DOI: https://doi.org/10.1007/11751595_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics