Nothing Special   »   [go: up one dir, main page]

Skip to main content

On-Line Regression Competitive with Reproducing Kernel Hilbert Spaces

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

  • 1135 Accesses

Abstract

We consider the problem of on-line prediction of real-valued labels, assumed bounded in absolute value by a known constant, of new objects from known labeled objects. The prediction algorithm’s performance is measured by the squared deviation of the predictions from the actual labels. No stochastic assumptions are made about the way the labels and objects are generated. Instead, we are given a benchmark class of prediction rules some of which are hoped to produce good predictions. We show that for a wide range of infinite-dimensional benchmark classes one can construct a prediction algorithm whose cumulative loss over the first N examples does not exceed the cumulative loss of any prediction rule in the class plus \(O(\sqrt{N})\); the main differences from the known results are that we do not impose any upper bound on the norm of the considered prediction rules and that we achieve an optimal leading term in the excess loss of our algorithm. If the benchmark class is “universal” (dense in the class of continuous functions on each compact set), this provides an on-line non-stochastic analogue for universally consistent prediction in non-parametric statistics. We use two proof techniques: one is based on the Aggregating Algorithm and the other on the recently developed method of defensive forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series. US Government Printing Oce, Washington, DC vol. 55 (1964) Republished many times by Dover, New York, starting from 1965

    Google Scholar 

  2. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auer, P., Cesa-Bianchi, N., Gentile, C.: Adaptive and self-condent on-line learning algorithms. Journal of Computer and System Sciences 64, 48–75 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.: Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks 7, 604–619 (1996)

    Article  Google Scholar 

  6. Devroye, L., Gyȯrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Applications of Mathematics, vol. 31. Springer, New York (1996)

    Google Scholar 

  7. Dudley, R.M.: Real Analysis and Probability Cambridge University Press, Cambridge (2002); Originally published in 1989

    Google Scholar 

  8. Engelking, R.: General Topology, 2nd edn. Sigma Series in Pure Mathematics, vol. 6. Heldermann, Berlin (1989); First edition: 1977 (Państwowe Wydawnictwo Naukowe, Warsaw)

    Google Scholar 

  9. Foster, D.P.: Prediction in the worst case. Annals of Statistics 19, 1084–1090 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Foster, D.P., Vohra, R.V.: Asymptotic calibration. Biometrika 85, 379–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fudenberg, D., Levine, D.K.: Conditional universal consistency. Games and Economic Behavior 29, 104–130 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gács, P.: Uniform test of algorithmic randomness over a general space. Theoretical Computer Science 341, 91–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gammerman, A., Kalnishkan, Y., Vovk, V.: On-line prediction with kernels and the Complexity Approximation Principle. In: Chickering, M., Halpern, J. (eds.) Proceedings of the Twentieth Annual Conference on Uncertainty in Artificial Intelligence, Arlington, VA pp. 170–176. AUAI Press (2004)

    Google Scholar 

  14. Gyȯrfi, L., Kohler, M., Krzyz̈ak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. Springer, New York (2002)

    Google Scholar 

  15. Haussler, D., Kivinen, J., Warmuth, M.K.: Sequential prediction of individual sequences under general loss functions. IEEE Transactions on Information Theory 44, 1906–1925 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kakade, S.M., Foster, D.P.: Deterministic calibration and Nash equilibrium. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 33–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Kimber, D., Long, P.M.: On-line learning of smooth functions of a single variable. Theoretical Computer Science 148, 141–156 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kivinen, J., Warmuth, M.K.: Exponential Gradient versus Gradient Descent for linear predictors. Information and Computation 132, 1–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lehrer, E.: Any inspection is manipulable. Econometrica 69, 1333–1347 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levin, L.A.: Uniform tests of randomness. Soviet Mathematics Doklady 17, 337–340 (1976)

    MATH  Google Scholar 

  21. Long, P.M.: Improved bounds about on-line learning of smooth functions of a single variable. Theoretical Computer Science 241, 25–35 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sandroni, A.: The reproducible properties of correct forecasts. International Journal of Game Theory 32, 151–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sandroni, A., Smorodinsky, R., Vohra, R.V.: Calibration with many checking rules. Mathematics of Operations Research 28, 141–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  25. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)

    Book  Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  27. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2, 67–93 (2001)

    Article  MathSciNet  Google Scholar 

  28. Stone, C.J.: Consistent nonparametric regression (with discussion). Annals of Statistics 5, 595–645 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  30. Vovk, V.: Aggregating strategies. In: Fulk, M., Case, J. (eds.) Proceedings of the Third Annual Workshop on Computational Learning Theory, pp. 371–383. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  31. Vovk, V.: Competitive on-line statistics. International Statistical Review 69, 213–248 (2001)

    Article  MATH  Google Scholar 

  32. Vovk, V.: Defensive prediction with expert advice. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 444–458. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Vovk, V.: Non-asymptotic calibration and resolution. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 429–443. Springer, Heidelberg (2005) A version of this paper can ve downbloaded from the arXiv.org e-Print archive, January 2006

    Chapter  Google Scholar 

  34. Vovk, V.: Competiting with wild prediction rules. Technical Report arXiv:cs.LG/0512059 (version 2), arXiv.org e-Print archive (January 2006)

    Google Scholar 

  35. Vovk, V.: On-line regression competitive with reproducing kernel Hilbert spaces. Technical Report arXiv:cs.LG/0511058 (version 2), arXiv.org e-Print archive (January 2006)

    Google Scholar 

  36. Vovk, V., Shafer, G.: Good randomized sequential probability forecasting is always possible. Journal of the Royal Statistical Society B 67, 747–763 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Vovk, V., Takemura, A., Shafer, G.: Defensive forecasting. In: Cowell, R.G., Ghahramani, Z. (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, pp. 365–372 (2005), Available electronically, at http://www.gatsby.ucl.ac.uk/aistats/

  38. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Machine Learning, pp. 768–775. AAAI Press, Menlo Park (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vovk, V. (2006). On-Line Regression Competitive with Reproducing Kernel Hilbert Spaces. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_43

Download citation

  • DOI: https://doi.org/10.1007/11750321_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics