Abstract
In this paper we present a classifier for Recognising Textual Entailment (RTE) and Semantic Equivalence. We evaluate the performance of this classifier using an evaluation framework provided by the PASCAL RTE Challenge Workshop. Sentence–pairs are represented as a set of features, which are used by our decision tree classifier to determine if an entailment relationship exisits between each sentence–pair in the RTE test corpus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dagan, I., Glickman, O., Magnini, B. (eds.): Proceedings of the PASCAL Recognising Textual Entailment Challenge Workshop, Southampton, UK, April 11-13 (2005)
Radev, D.: Summarisation Tutorial. In: SIGIR 2004 (2004), http://www.summarization.com/sigirtutorial2004.ppt
Dolan, B., Dagan, I. (eds.): Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, Michigan, USA, June 30 (2005)
Corley, C., Mihalcea, R.: Measuring the Semantic Similarity of Texts. In: Proceedings of ACL Workshop on Empirical Modelling of Semantic Equivalence and Entailment. ACL (June 2005)
Budanitsky, A., Hirst, G.: Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures. In: Proceedings of Workshop on WordNet and Other Lexical Resources, Second meeting of the North American. Chapter of the Association for Computational Linguistics (2001)
de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., Sammons, M.: An Inference Model for Semantic Entailment in Natural Language. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Akhmatova, E.: Textual Entailment Resolution via Atomic Propositions. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Bos, J., Markert, K.: Combining Shallow and Deep NLP methods for Recognizing Textual Entailment. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Fowler, A., Hauser, B., Hodges, D., Niles, I., Novischi, A., Stephan, J.: Applying COGEX to Recognize Textual Entailment. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Pazienza, M.T., Pennacchiotti, M., Zanzotto, F.M.: Textual Entailment as Syntactic Graph Distance. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Herrera, J., Peñas, A., Verdejo, F.: Textual Entailment Recognition based on dependency analysis and WordNet. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Vanderwende, L., Coughlin, D., Dolan, W.: What Syntax can Contribute in Entailment Task. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Marsi, E., Krahmer, E.: Classification of semantic relations by humans and machines. In: Proc. ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor (June 2005)
Raina, R., et al.: Robust Textual Inference using Diverse Knowledge Sources. In: Proc. PASCAL Workshop on Recognising Textual Entailment (2005)
Raina, R., Ng, A.Y., Manning, C.D.: Robust Textual Inference via Learning and Abductive Reasoning. AAAI, Menlo Park (2005)
van Rijsbergen, C.J.: Information Retrieval, http://www.dcs.gla.ac.uk/Keith/Preface.html
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)
Hatzivassiloglou, V., et al.: SimFinder: A Flexible Clustering Tool for Summarization. In: Workshop on Automatic Summarization, NAACL, Pittsburg, USA (2001)
Carbonell, J., Goldstein, J.: The use of MMR, Diversity–Based Reranking for Reordering Documents and Producing Summaries. In: SIGIR 1998, Melbourne, Australia (1998)
Goldstein, J., Mittal, V., Carbonell, J., Kantrowitz, M.: Multi–Document Summarization by Sentence Extraction. Automatic Summarization. In: Proceedings of the ANLP/NAACL Workshop, Seattle, WA (April 2000)
Allan, J., Gupta, R., Khandewal, V.: Temporal Summaries of News Topics. In: Proceedings of SIGIR 2001 (2001)
Barzilay, R., McKeown, K.R.: Sentence Fusion for Multidocument News Summarization. Computational Linguistics (2005)
Barzilay, R., Elhadad, N.: Sentence Alignment for Monolingual Comparable Corpora. In: Proceedings of Empirical Methods in Natural Language Processing (EMNLP), Sapporo, Japan (2003)
Barzilay, R.: Multidocument Summarizer, PhD Thesis. Columbia University (2002)
Melcuk, I.: Dependency Syntax: Theory and Practice. State of New York University Press, Albany
NewsBlaster: Columbia University (2005), http://newsblaster.cs.columbia.edu/
Quinlan, J.R.: C5.0 Machine Learning Algorithm, At: http://www.rulequest.com
Miller, G.A., et al.: WordNet: Lexical Database for the English language. Cognitive Science Laboratory. Princeton University, At: http://www.cogsci.princeton.edu/~wn
Chklovski, T., Pantel, P.: VerbOcean: Mining the Web for Fine–Grained Semantic Verb Relations. In: Proc. Conf. Empirical Methods in Natural Language Processing, EMNLP 2004 (2004)
Deerwester, S., Dumais, S.T., Furna, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science (1990)
Landauer, T.K., Foltz, P.W., Latham, D.: Introduction to Latent Semantic Analysis. Discourse Processes (1998)
Lin, C.-Y., Hovy, E.: Automatic Evaluation of Summaries using n-gram co– occurence statistics. In: Proc. Document Understanding Conference (DUC), National Institute of Standards and Technology (2004)
Patwardhan, S., Michelizzi, J., Banerjee, S., Pedersen, T.: WordNet:Similarity Perl Module, http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity.pm
Rennie, J.: WordNet:QueryData Perl Module, At: http://search.cpan.org/~jrennie/WordNet-QueryData-1.39/QueryData.pm
Document Understanding Conference (DUC), National Institute of Standards and Technology, USA, At: http://duc.nist.gov
Porter, M.: An Algorithm for Suffix Stripping. Progam 14(3) (July 1980), At: http://www.tartarus.org/~martin/PorterStemmer/def.txt
Galassi, M., et al.: GNU Scientific Library Reference Manual, 2nd edn., At: http://www.gnu.org/software/gsl/
Chklovski, T., Pantel, P.: Global Path-based Refinement of Noisy Graphs Applied to Verb Semantics. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS (LNAI), vol. 3651, pp. 792–803. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Newman, E., Stokes, N., Dunnion, J., Carthy, J. (2006). Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds) Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment. MLCW 2005. Lecture Notes in Computer Science(), vol 3944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736790_21
Download citation
DOI: https://doi.org/10.1007/11736790_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33427-9
Online ISBN: 978-3-540-33428-6
eBook Packages: Computer ScienceComputer Science (R0)