Abstract
In the current paper we provide two methods for quantifier elimination applicable to a large class of formulas of the elementary set theory. The first one adapts the Ackermann method [1] and the second one adapts the fixpoint method of [20]. We show applications of the proposed techniques in the theory of correspondence between modal logics and elementary set theory. The proposed techniques can also be applied in an automated generation of proof rules based on the semantic-based translation of axioms of a given logic into the elementary set theory.
Partially supported by the EU Cost Action 274 (Tarski), INTAS project 04-77-7080 and the grant 3 T11C 023 29 of the Polish Ministry of Science and Information Society Technologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, W.: Untersuchungen über das Eliminationsproblem der Mathematischen Logik. Mathematische Annalen 110, 390–413 (1935)
Arnold, A., Niwinski, D.: Rudiments of μ-calculus. Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (2001)
Berghammer, R., Möller, B., Struth, G. (eds.): RelMiCS 2003. LNCS, vol. 3051. Springer, Heidelberg (2004)
D’Agostino, G., Montanari, A., Policriti, A.: A set-theoretic translation method for polymodal logics. Journal of Automated Reasoning 3(15), 317–337 (1995)
Demri, S., Orłowska, E.: Logical analysis of demonic nondeterministic programs. Theoretical Computer Science 166, 173–202 (1996)
Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-world reasoning in rough knowledge databases. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, pp. 219–250. Springer, Heidelberg (2003)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)
Doherty, P., Łukaszewicz, W., Szałas, A.: Declarative PTIME queries for relational databases using quantifier elimination. Journal of Logic and Computation 9(5), 739–761 (1999)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI (IJCAI 2001), pp. 145–151 (2000)
Düntsch, I., Orłowska, E.: A proof system for contact relation algebras. Journal of Philosophical Logic 29, 241–262 (2000)
Frias, M., Orłowska, E.: A proof system for fork algebras and its applications to reasoning in logics based on intuitionism. Logique et Analyse 150, 151, 152, 239–284 (1995)
Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge representation and reasoning, KR 1992, pp. 425–435. Morgan Kaufmann, San Francisco (1992)
Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: [29], pp. 97–109 (2001)
Knaster, B.: Un theoreme sur les fonctions d’ensembles. Ann. Soc. Polon. Math. 6, 133–134 (1928)
Konikowska, B., Orłowska, E.: A relational formalisation of a generic many-valued modal logic. In: [29], pp. 183–202 (2001)
Lifschitz, V.: Computing circumscription. In: Proc. 9th IJCAI, pp. 229–235. Morgan Kaufmann, San Francisco (1985)
Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Artificial Intelligence and Logic Programming, vol. 3, pp. 297–352. Oxford University Press, Oxford (1991)
MacCaull, W., Orłowska, E.: Correspondence results for relational proof systems with application to the Lambek calculus. Studia Logica: an International Journal for Symbolic Logic 71(3), 279–304 (2002)
Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)
Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orłowska, E. (ed.) Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa. Studies in Fuzziness and Soft Computing, vol. 24, pp. 307–328. Springer, Physical-verlag (1998)
Omodeo, E., Orłowska, E., Policriti, A.: Rasiowa-Sikorski style relational elementary set theory. In: Berghammer, R., Moeller, B., Struth, G. (eds.) [3], pp. 213–224 (2004)
Orłowska, E.: Dynamic logic with program specifications and its relational proof system. Journal of Applied Non-Classical Logic 3, 147–171 (1993)
Orłowska, E.: Relational interpretation of modal logics. In: Andreka, H., Monk, D., Nemeti, I. (eds.) Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai, vol. 54, pp. 443–471 (1988)
Orłowska, E.: Relational proof systems for relevant logics. Journal of Symbolic Logic 57, 1425–1440 (1992)
Orłowska, E.: Relational semantics for non-classical logics: Formulas are relations. In: Woleński, J. (ed.) Philosophical Logic in Poland, pp. 167–186 (1994)
Orłowska, E.: Relational proof systems for modal logics. In: Wansing, H. (ed.) Proof Theory of Modal Logics, pp. 55–77 (1996)
Orłowska, E.: Relational formalisation of nonclassical logics. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science, pp. 90–105 (1997)
Orłowska, E., McCaull, W.: A calculus of typed relations. In: [3], pp. 152–158 (2004)
Orłowska, E., Szałas, A. (eds.): Relational Methods for Computer Science Applications. Springer, Heidelberg (2001)
Simmons, H.: The monotonous elimination of predicate variables. Journal of Logic and Computation 4, 23–68 (1994)
Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)
Szałas, A.: On an automated translation of modal proof rules into formulas of the classical logic. Journal of Applied Non-Classical Logics 4, 119–127 (1994)
Szałas, A.: Second-order quantifier elimination in modal contexts. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 223–232. Springer, Heidelberg (2002)
Szałas, A.: On a logical approach to estimating computational complexity of potentially intractable problems. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 423–431. Springer, Heidelberg (2003)
Tarski, A.: A Lattice-theoretical Fixpoint Theorem and its Applications. Pacific Journal of Mathematics 5(2), 285–309 (1965)
van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Naples (1983)
van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 167–247. D. Reidel Pub. Co., Dordrecht (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Orłowska, E., Szałas, A. (2006). Quantifier Elimination in Elementary Set Theory. In: MacCaull, W., Winter, M., Düntsch, I. (eds) Relational Methods in Computer Science. RelMiCS 2005. Lecture Notes in Computer Science, vol 3929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734673_19
Download citation
DOI: https://doi.org/10.1007/11734673_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33339-5
Online ISBN: 978-3-540-33340-1
eBook Packages: Computer ScienceComputer Science (R0)