Nothing Special   »   [go: up one dir, main page]

Skip to main content

wp Is wlp

  • Conference paper
Relational Methods in Computer Science (RelMiCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3929))

Included in the following conference series:

Abstract

Using only a simple transition relation one cannot model commands that may or may not terminate in a given state. In a more general approach commands are relations enriched with termination vectors. We reconstruct this model in modal Kleene algebra. This links the recursive definition of the do od loop with a combination of the Kleene star and a convergence operator. Moreover, the standard wp operator coincides with the wlp operator in the modal Kleene algebra of commands. Therefore our earlier general soundness and relative completeness proof for Hoare logic in modal Kleene algebra can be re-used for wp. Although the definition of the loop semantics is motivated via the standard Egli-Milner ordering, the actual construction does not depend on Egli-Milner-isotony of the constructs involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Apt, K.-R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs, 2nd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  3. Backhouse, R.C., van der Woude, J.: Demonic operators and monotype factors. Mathematical Structures in Computer Science 3(4), 417–433 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and non-deterministic programs. Theoretical Computer Science 43, 123–147 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broy, M., Gnatz, R., Wirsing, M.: Semantics of nondeterministic and non-continuous constructs. In: Gerhart, S.L., Pair, C., Pepper, P.A., Wössner, H., Dijkstra, E.W., Guttag, J.V., Owicki, S.S., Partsch, H., Bauer, F.L., Gries, D., Griffiths, M., Horning, J.J., Wirsing, M. (eds.) Program Construction. LNCS, vol. 69, pp. 553–592. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  6. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  8. Desharnais, J., Belkhiter, N., Sghaier, S.B.M., Tchier, F., Jaoua, A., Mili, A., Zaguia, N.: Embedding a demonic semilattice in a relation algebra. Theoretical Computer Science 149, 333–360 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desharnais, J., Mili, A., Nguyen, T.T.: Refinement and demonic semantics. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational methods in computer science, ch. 11, pp. 166–183. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  11. Desharnais, J., Möller, B., Struth, G.: Termination in modal Kleene algebra. In: Lévy, J.-J., Mayr, E., Mitchell, J. (eds.) Exploring new frontiers of theoretical informatics. IFIP International Federation for Information Processing Series, vol. 155, pp. 653–666. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  12. Desharnais, J., Möller, B., Tchier, F.: Kleene under a modal demonic star. Journal on Logic and Algebraic Programming, Special Issue on Relation Algebra and Kleene Algebra (to appear, 2005)

    Google Scholar 

  13. Doornbos, H.: A relational model of programs without the restriction to Egli-Milner-monotone constructs. In: Olderog, E.-R. (ed.) Programming concepts, methods and calculi, pp. 363–382. North-Holland, Amsterdam (1994)

    Google Scholar 

  14. Ehm, T.: The Kleene algebra of nested pointer structures: theory and applications. Universität Augsburg, Ph.D Thesis (December 2003)

    Google Scholar 

  15. Guttmann, W., Möller, B.: Modal design algebra. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010. Springer, Heidelberg (2006); Preliminary version: Institut für Informatik, Universität Augsburg, Report 2005-15

    Chapter  Google Scholar 

  16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  18. Kozen, D.: Kleene algebras with tests. ACM TOPLAS 19, 427–443 (1997)

    Article  MathSciNet  Google Scholar 

  19. Möller, B.: Towards pointer algebra. Science of Computer Programming 21, 57–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Möller, B.: Lazy Kleene algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 252–273. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Möller, B., Struth, G.: Modal Kleene algebra and partial correctness. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 379–393. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Möller, B., Struth, G.: WP is WLP. Institut für Informatik, Universität Augsburg, Report 2004-14 (2004)

    Google Scholar 

  23. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems 11, 517–561 (1989)

    Article  Google Scholar 

  24. Nguyen, T.T.: A relational model of nondeterministic programs. International J. Foundations Comp. Sci. 2, 101–131 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parnas, D.: A generalized control structure and its formal definition. Commun. ACM 26, 572–581 (1983)

    Article  MATH  Google Scholar 

  26. Spivey, J.M.: Understanding Z. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  27. von Wright, J.: Towards a refinement algebra. Science of Computer Programming 51, 23–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Möller, B., Struth, G. (2006). wp Is wlp. In: MacCaull, W., Winter, M., Düntsch, I. (eds) Relational Methods in Computer Science. RelMiCS 2005. Lecture Notes in Computer Science, vol 3929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734673_16

Download citation

  • DOI: https://doi.org/10.1007/11734673_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33339-5

  • Online ISBN: 978-3-540-33340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics