Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lattice-Based Paraconsistent Logic

  • Conference paper
Relational Methods in Computer Science (RelMiCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3929))

Included in the following conference series:

Abstract

In this paper we describe a procedure for developing models and associated proof systems for two styles of paraconsistent logic. We first give an Urquhart-style representation of bounded not necessarily discrete lattices using (grill, cogrill) pairs. From this we develop Kripke semantics for a logic permitting 3 truth values: true, false and both true and false. We then enrich the lattice by adding a unary operation of negation that is involutive and antimonotone and show that the representation may be extended to these lattices. This yields Kripke semantics for a nonexplosive 3-valued logic with negation.

This work was performed within the framework of the COST Action 274, entitled: ”Theory and Applications of Relational Structures as Knowledge Instruments” (www.tarski.org). Both authors were supported by a NATO Science and Technology Collaborative Linkages Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allwein, G., Dunn, M.: Kripke models for linear logic. Journal of Symbolic Logic 58, 514–545 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allwein, G., MacCaull, W.: A Kripke semantics for the logic of Gelfand quantales. Studia Logica 61, 1–56 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Arieli, O., Avron, A.: A model-theoretic approach for recovering consistent data from inconsistent knowledge-bases. Journal of Automated Reasoning 22, 263–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belnap, N.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel, Dordrecht (1977)

    Google Scholar 

  5. da Costa, N.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, 497–510 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dunn, M.: Gaggle Theory: An abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators. In: van Eijck, J. (ed.) JELIA 1990. LNCS (LNAI), vol. 478, pp. 31–51. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  7. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Programming 11, 91–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ginsberg, M.: Multivalued logics: A uniform approach to reasoning in AI. Computer Intelligence 4, 256–316 (1988)

    Google Scholar 

  9. MacCaull, W., Orłowska, E.: Correspondence results for relational proof systems with application to the Lambek Calculus. Studia Logica 71, 389–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. MacCaull, W., Vakarelov, D.: Lattice-based paraconsistent logic. In: Düntsch, I., Winter, M. (eds.) Proceedings of RelMiCS 8, the 8th International Seminar in Relational Methods in Computer Science, pp. 155–162 (2005)

    Google Scholar 

  11. Orłowska, E., Vakarelov, D.: Lattices with modal operators and lattice based modal logics (to appear)

    Google Scholar 

  12. Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundamenta Informaticae 83, 219–250 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Urquhart, A.: A topological representation for lattices. Algebra Universalis 8, 45–58 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vakarelov, D.: Semi-Boolean algebras and semantics for HB-predicate logic. Bull. Acad. Polon. Sci. Ser. Math. Phys. 22, 1087–1095 (1974)

    MATH  Google Scholar 

  15. Vakarelov, D.: Consistency, completeness and negation. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic, Essays on the Inconsistent. Philosophia Verlag (1989)

    Google Scholar 

  16. Vakarelov, D.: Intuitive semantics for some three-valued logics connected with information, contrariety and subcontrariety. Studia Logica 48, 565–575 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MacCaull, W., Vakarelov, D. (2006). Lattice-Based Paraconsistent Logic. In: MacCaull, W., Winter, M., Düntsch, I. (eds) Relational Methods in Computer Science. RelMiCS 2005. Lecture Notes in Computer Science, vol 3929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734673_14

Download citation

  • DOI: https://doi.org/10.1007/11734673_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33339-5

  • Online ISBN: 978-3-540-33340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics