Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-stage Evolutionary Algorithms for Efficient Identification of Gene Regulatory Networks

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

Abstract

With the availability of the time series data from the high-throughput technologies, diverse approaches have been proposed to model gene regulatory networks. Compared with others, S-system has the advantage for these tasks in the sense that it can provide both quantitative (structural) and qualitative (dynamical) modeling in one framework. However, it is not easy to identify the structure of the true network since the number of parameters to be estimated is much larger than that of the available data. Moreover, conventional parameter estimation requires the time-consuming numerical integration to reproduce dynamic profiles for the S-system. In this paper, we propose multi-stage evolutionary algorithms to identify gene regulatory networks efficiently. With the symbolic regression by genetic programming (GP), we can evade the numerical integration steps. This is because the estimation of slopes for each time-course data can be obtained from the results of GP. We also develop hybrid evolutionary algorithms and modified fitness evaluation function to identify the structure of gene regulatory networks and to estimate the corresponding parameters at the same time. By applying the proposed method to the identification of an artificial genetic network, we verify its capability of finding the true S-system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov, E., Palsson, B.O.: Metabolic modeling of microbial strains in silico. Trends in Biochemical Science 26, 179–186 (2001)

    Article  Google Scholar 

  2. De Jong, H.: Modeling and simulation of genetic regulatory system: a literature review. Journal of Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  3. Stelling, J.: Mathematical models in microbial systems biology. Current Opinion in Microbiology 7, 513–518 (2004)

    Article  Google Scholar 

  4. Barabasi, A.-L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5, 101–113 (2004)

    Article  Google Scholar 

  5. De Jong, H., Gouze, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66, 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  6. Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 402, 231–237 (2002)

    Article  Google Scholar 

  7. Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Fogel, D.B.: System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press (1991)

    Google Scholar 

  9. Tominaga, D., Koga, N., Okamoto, M.: Efficient numerical optimization algorithm based on genetic algorithm for inverse problem. In: Whitley, D., et al. (eds.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference, pp. 251–258 (2000)

    Google Scholar 

  10. Ando, S., Sakamoto, E., Iba, H.: Evolutionary modeling and inference of gene network. Information Science 145, 237–259 (2002)

    MathSciNet  Google Scholar 

  11. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19, 643–650 (2003)

    Article  Google Scholar 

  12. Spieth, C., Streichert, F., Speer, N., Zell, A.: Optimizing topology and parameters of gene regulatory networt models from time-series experiments. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 461–470. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Almeida, J.S., Voit, E.O.: Neural network-based parameter estimation in S-system models of biological networks. Genome Informatics 14, 114–123 (2003)

    Google Scholar 

  14. Tsai, K.-Y., Wang, F.-S.: Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics 21, 1180–1188 (2005)

    Article  Google Scholar 

  15. Savageau, M.A.: Biochemical System Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading (1976)

    Google Scholar 

  16. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Bäck, T.: Evolutionary Algorithm in Theory and Practice. Oxford University Press, Oxford (1996)

    Google Scholar 

  18. http://www.cs.bham.ac.uk/~cmf/GPLib/GPLib.html

  19. Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 24–31 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, KY., Cho, DY., Zhang, BT. (2006). Multi-stage Evolutionary Algorithms for Efficient Identification of Gene Regulatory Networks. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_5

Download citation

  • DOI: https://doi.org/10.1007/11732242_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics