Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulating Protein Motions with Rigidity Analysis

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Protein motions, ranging from molecular flexibility to large-scale conformational change, play an essential role in many biochemical processes. Despite the explosion in our knowledge of structural and functional data, our understanding of protein movement is still very limited. In previous work, we developed and validated a motion planning based method for mapping protein folding pathways from unstructured conformations to the native state. In this paper, we propose a novel method based on rigidity theory to sample conformation space more effectively, and we describe extensions of our framework to automate the process and to map transitions between specified conformations. Our results show that these additions both improve the accuracy of our maps and enable us to study a broader range of motions for larger proteins. For example, we show that rigidity-based sampling results in maps that capture subtle folding differences between protein G and its mutations, NuG1 and NuG2, and we illustrate how our technique can be used to study large-scale conformational changes in calmodulin, a 148 residue signaling protein known to undergo conformational changes when binding to Ca2 + . Finally, we announce our web-based protein folding server which includes a publically available archive of protein motions: http://parasol.tamu.edu/foldingserver/

Supported in part by NSF Grants EIA-0103742, ACR-0081510, ACR-0113971, CCR-0113974, ACI-0326350, and by the DOE. Thomas supported in part by an NSF Graduate Research Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alm, E., Baker, D.: Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl. Acad. Sci. USA 96(20), 11305–11310 (1999)

    Article  Google Scholar 

  2. Amato, N.M., Dill, K.A., Song, G.: Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. J. Comput. Biol. 10(3-4), 239–256 (2003); Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) (2002)

    Google Scholar 

  3. Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. J. Comput. Biol. 9(2), 149–168 (2002); Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) (2001)

    Google Scholar 

  4. Apaydin, M., Brutlag, D., Guestrin, C., Hsu, D., Latombe, J.-C.: Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pp. 12–21 (2002)

    Google Scholar 

  5. Apaydin, M., Singh, A., Brutlag, D., Latombe, J.-C.: Capturing molecular energy landscapes with probabilistic conformational roadmaps. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 932–939 (2001)

    Google Scholar 

  6. Baker, D.: A surprising simplicity to protein folding. Nature 405, 39–42 (2000)

    Article  Google Scholar 

  7. Bayazit, O.B., Song, G., Amato, N.M.: Ligand binding with OBPRM and haptic user input: Enhancing automatic motion planning with virtual touch. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 954–959 (2001); This work was also presented as a poster at RECOMB 2001

    Google Scholar 

  8. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Research 28(1), 235–242 (2000)

    Article  Google Scholar 

  9. Boutonnet, N., Rooman, M., Wodak, S.: Automatic analysis of protein conformational changes by multiple linkage clustering. J. Mol. Biol. 253, 633–647 (1995)

    Article  Google Scholar 

  10. Bryngelson, J., Onuchic, J., Socci, N., Wolynes, P.: Funnels, pathways, and the energy landscape of protein folding: A synthesis. Protein Struct. Funct. Genet. 21, 167–195 (1995)

    Article  Google Scholar 

  11. Case, D.: Molecular dynamics and normal mode analysis of biomolecular rigidity. In: Thorpe, M., Duxbury, P. (eds.) Rigidity theory and applications, pp. 329–344. Kluwer Academic/Plenum Publishers (1999)

    Google Scholar 

  12. Cortes, J., Simeon, T., Remaud-Simeon, M., Tran, V.: Geometric algorithms for the conformational analysis of long protein loops. J. Computat. Chem. 25 (2004)

    Google Scholar 

  13. Covell, D.: Folding protein α-carbon chains into compact forms by Monte Carlo methods. Proteins: Struct. Funct. Genet. 14(4), 409–420 (1992)

    Google Scholar 

  14. Echols, N., Milburn, D., Gerstein, M.: Molmovdb: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res. 31, 478–482 (2003)

    Article  Google Scholar 

  15. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)

    Article  Google Scholar 

  16. Haile, J.: Molecular Dynamics Simulation: elementary methods. Wiley, New York (1992)

    Google Scholar 

  17. Hespenheide, B.M., Rader, A., Thorpe, M., Kuhn, L.A.: Identifying protein folding cores from the evolution of flexible regious during unfolding. J. Mol. Gra. Model. 21, 195–207 (2002)

    Article  Google Scholar 

  18. Jacobs, D.: Generic rigidity in three-dimensional bond-bending networks. J. Phys. A: Math. Gen. 31, 6653–6668 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jacobs, D., Thorpe, M.: Generic rigidity percolation: The pebble game. Phys. Rev. Lett. 75(22), 4051–4054 (1995)

    Article  Google Scholar 

  20. Jacobs, D.J., Rader, A., Kuhn, L.A., Thorpe, M.: Protein flexiblility predictions using graph theory. Proteins Struct. Funct. Genet. 44, 150–165 (2001)

    Article  Google Scholar 

  21. Janin, J., Wodak, S.: Structural domains in proteins and their role in the dynamics of protein function. Prog. Biophys. Mol. Biol. 42, 21–78 (1983)

    Article  Google Scholar 

  22. Karplus, P., Schulz, G.: Prediction of chain flexibility in proteins. Naturwissencschaften 72, 212–213 (1985)

    Article  Google Scholar 

  23. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)

    Article  Google Scholar 

  24. Keskin, O., Jernigan, R., Bahar, I.: Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys. J. 78, 2093–2106 (2000)

    Article  Google Scholar 

  25. Kim, D.E., Fisher, C., Baker, D.: A breakdown of symmetry in the folding transition state of protein l. J. Mol. Biol. 298, 971–984 (2000)

    Article  Google Scholar 

  26. Kolinski, A., Skolnick, J.: Monte Carlo simulations of protein folding. Proteins Struct. Funct. Genet. 18(3), 338–352 (1994)

    Google Scholar 

  27. Krivov, S.V., Karplus, M.: Free energy disconnectivity graphs: Application to peptide models. J. Chem. Phys 114(23), 10894–10903 (2002)

    Article  Google Scholar 

  28. Lei, M., Zavodszky, M.I., Kuhn, L.A., Thorpe, M.F.: Sampling protein conformations and pathways. J. Comput. Chem. 25, 1133–1148 (2004)

    Article  Google Scholar 

  29. Levitt, M.: Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 170, 723–764 (1983)

    Article  Google Scholar 

  30. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253, 694–698 (1975)

    Article  Google Scholar 

  31. Li, R., Woodward, C.: The hydrogen exchange core and protein folding. Protein Sci. 8(8), 1571–1591 (1999)

    Article  Google Scholar 

  32. Ma, J., Karplus, M.: The allosteric mechanism of the chaperonin groel: a dynamic analysis. Proc. Natl. Acad. Sci. USA 95, 8502–8507 (1998)

    Article  Google Scholar 

  33. Maiorov, V., Abagyan, R.: A new method for modeling large-scale rearrangements of protein domains. Proteins 27, 410–424 (1997)

    Article  Google Scholar 

  34. McCallister, E.L., Alm, E., Baker, D.: Critical role of β-hairpin formation in protein g folding. Nat. Struct. Biol. 7(8), 669–673 (2000)

    Article  Google Scholar 

  35. Muñoz, V., Henry, E.R., Hoferichter, J., Eaton, W.A.: A statistical mechanical model for β-hairpin kinetics. Proc. Natl. Acad. Sci. USA 95, 5872–5879 (1998)

    Article  Google Scholar 

  36. Nauli, S., Kuhlman, B., Baker, D.: Computer-based redesign of a protein folding pathway. Nature Struct. Biol. 8(7), 602–605 (2001)

    Article  Google Scholar 

  37. Nichols, W., Rose, G., Eyck, L.T., Zimm, B.: Rigid domains in proteins: an algorithmic approach to their identification. Proteins 23, 38–48 (1995)

    Article  Google Scholar 

  38. Prusiner, S.: Prions. Proc. Natl. Acad. Sci. USA 95(23), 13363–13383 (1998)

    Article  Google Scholar 

  39. Rader, A., Hespenheide, B.M., Kuhn, L.A., Thorpe, M.: Protein unfolding: Rigidity lost. Proc. Natl. Acad. Sci. USA 99(6), 3540–3545 (2002)

    Article  Google Scholar 

  40. Singh, A., Latombe, J., Brutlag, D.: A motion planning approach to flexible ligand binding. In: 7th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB), pp. 252–261 (1999)

    Google Scholar 

  41. Song, G.: A Motion Planning Approach to Protein Folding. Ph.D. dissertation. Dept. of Computer Science, Texas A&M University (December 2004)

    Google Scholar 

  42. Song, G., Thomas, S., Dill, K., Scholtz, J., Amato, N.: A path planning-based study of protein folding with a case study of hairpin formation in protein G and L. In: Proc. Pacific Symposium of Biocomputing (PSB), pp. 240–251 (2003)

    Google Scholar 

  43. Sternberg, M.J.: Protein Structure Prediction. OIRL Press at Oxford University Press (1996)

    Google Scholar 

  44. Sun, S., Thomas, P.D., Dill, K.A.: A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Eng. 8(8), 769–778 (1995)

    Article  Google Scholar 

  45. Tang, X., Kirkpatrick, B., Thomas, S., Song, G., Amato, N.M.: Using motion planning to study rna folding kinetics. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pp. 252–261 (2004)

    Google Scholar 

  46. Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math. 197, 171–311 (1996)

    MathSciNet  Google Scholar 

  47. Xie, D., Thomas, S., Lien, J.-M., Amato, N.M.: Incremental map generation. Technical Report TR05-006, Parasol Lab. Dept. of Computer Science, Texas A&M University (September 2005)

    Google Scholar 

  48. Zuckerman, D.M.: Simulation of and ensemble of conformational transitions in a united-residue model of calmodulin. J. Phys. Chem 108, 5127–5137 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thomas, S., Tang, X., Tapia, L., Amato, N.M. (2006). Simulating Protein Motions with Rigidity Analysis. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_33

Download citation

  • DOI: https://doi.org/10.1007/11732990_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics