Abstract
In this work we show an innovative approach to the protein folding problem based on an hybrid Immune Algorithm (IA) and a quasi-Newton method starting from a population of promising protein conformations created by the global optimizer DIRECT. The new method has been tested on Met-Enkephelin peptide, which is a paradigmatic example of multiple-minima problem, 1POLY, 1ROP and the three helix protein 1BDC. The experimental results show as the multistage approach is a competitive and effective search method in the conformational search space of real proteins, in terms of quality solution and computational cost comparing the results of the current state-of-art algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Levitt, M.: Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 170, 723–764 (1983)
Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring function. J. Mol. Biol. 306, 1191–1199 (1997)
Hansmann, U.H., Okamoto, Y.: Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comp. Chem. 18, 920–933 (1997)
Bowie, J.U., Eisemberg, D.: An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc. Natl. Acad. Sci. USA 91, 4436–4440 (1994)
Huang, S.E., Samudrala, R., Ponder, J.W.: Ab initio folding prediction of small helical proteins using distance geometry and knowledge-based scoring functions. J. Mol. Biol. 290, 267–281 (1999)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. of Optimization Theory and Application 79, 157–181 (1993)
Finkel, D.E.: DIRECT Optimization Algorithm User Guide. Technical Report, CRSC N.C. State University (March 2003), ftp://ftp.ncsu.edu/pub/ncsu/crsc/pdf/crsc-tr03-11.pdf
Nicosia, G., Cutello, V., Bentley, P., Timmis, J. (eds.): ICARIS 2004. LNCS, vol. 3239. Springer, Heidelberg (2004)
Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: A characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)
Dunbrack Jr., R.L., Cohen, F.E.: Bayesian statistical analysis of protein sidechain rotamer preferences. Protein Science 6, 1661–1681 (1997)
Purisima, E.O., Scheraga, H.A.: An approach to the multiple-minima problem in protein folding by relaxing dimensionality. test on enkephalin. J. Mol. Biol. 196, 697–709 (1987)
Li, Z., Scheraga, H.A.: Structure and free energy of complex thermodynamics systems. J. Mol. Stru. 179, 333–352 (1988)
Kaiser Jr., C.E., Lamont, G.B., Merkle, L.D., Gates Jr., G.H., Patcher, R.: Polypeptide structure prediction: Real-valued versus binary hybrid genetic algorithms. In: Proc. of the ACM Symposium on Applied Computing (SAC), San Jose, CA, March 1997, pp. 279–286 (1997)
Bindewald, E., Hesser, J., Männer, R.: Implementing genetic algorithms with sterical constraints for protein structure prediction. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 959–967. Springer, Heidelberg (1998)
Rabow, A.A., Scheraga, H.A.: Improved genetic algorithm for the protein folding problem by use of cartesian combination operators. Protein Science 5, 1800–1815 (1996)
Baldi, P., Pollastri, G.: The Principled Design of Large-Scale Recursive Neural Network Architectures-DAG-RNNs and the Protein Structure Prediction Problem. Journal of Machine Learning Research 4, 575–603 (2003)
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice- Hall, Englewood Cliffs (1983)
Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representation of quasi Newton matrices and their use in limited memory methods. Mathematical Programming 63(4), 129–156 (1994)
McLachlan, A.D.: Rapid Comparison of Protein Structures. Acta Cryst. A38, 871–873 (1982)
Huang, C.C., Couch, G.S., Pettersen, E.F., Ferrin, T.E.: Chimera: An Extensible Molecular Modeling Application Constructed Using Standard Components. In: Pacific Symposium on Biocomputing, vol. 1, p. 724 (1996)
Hiroyasu, T., Miki, M., Iwahashi, T., Okamoto, Y.: Dual Individual Distributed Genetic Algorithm for Minimizing the Energy of Protein Tertiary Structure, BioGEC 2003. In: Biological Applications of Genetic and Evolutionary Computation, Genetic and Evolutionary Computation Conference 2003 (GECCO 2003), Chicago, Illinois, USA, July 12-16 (2003)
Hansmann, U.H.E., Okamoto, Y.: Prediction of Peptide Conformation by the Multicanonical Algorithm. In: Landau, D.P., Mon, K.K., Schttler, H.B. (eds.) Computer Simulation Studies in Condensed Matter Physics VI, p. 168. Springer, Heidelberg (1993)
Foloppe, N., MacKerell Jr., A.D.: All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 21, 86–104 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Anile, A.M., Cutello, V., Narzisi, G., Nicosia, G., Spinella, S. (2006). Lipschitzian Pattern Search and Immunological Algorithm with Quasi-Newton Method for the Protein Folding Problem: An Innovative Multistage Approach. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_38
Download citation
DOI: https://doi.org/10.1007/11731177_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33183-4
Online ISBN: 978-3-540-33184-1
eBook Packages: Computer ScienceComputer Science (R0)