Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lipschitzian Pattern Search and Immunological Algorithm with Quasi-Newton Method for the Protein Folding Problem: An Innovative Multistage Approach

  • Conference paper
Neural Nets (WIRN 2005, NAIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3931))

  • 848 Accesses

Abstract

In this work we show an innovative approach to the protein folding problem based on an hybrid Immune Algorithm (IA) and a quasi-Newton method starting from a population of promising protein conformations created by the global optimizer DIRECT. The new method has been tested on Met-Enkephelin peptide, which is a paradigmatic example of multiple-minima problem, 1POLY, 1ROP and the three helix protein 1BDC. The experimental results show as the multistage approach is a competitive and effective search method in the conformational search space of real proteins, in terms of quality solution and computational cost comparing the results of the current state-of-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Levitt, M.: Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 170, 723–764 (1983)

    Article  Google Scholar 

  2. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring function. J. Mol. Biol. 306, 1191–1199 (1997)

    Article  Google Scholar 

  3. Hansmann, U.H., Okamoto, Y.: Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comp. Chem. 18, 920–933 (1997)

    Article  Google Scholar 

  4. Bowie, J.U., Eisemberg, D.: An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc. Natl. Acad. Sci. USA 91, 4436–4440 (1994)

    Article  Google Scholar 

  5. Huang, S.E., Samudrala, R., Ponder, J.W.: Ab initio folding prediction of small helical proteins using distance geometry and knowledge-based scoring functions. J. Mol. Biol. 290, 267–281 (1999)

    Article  Google Scholar 

  6. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. of Optimization Theory and Application 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Finkel, D.E.: DIRECT Optimization Algorithm User Guide. Technical Report, CRSC N.C. State University (March 2003), ftp://ftp.ncsu.edu/pub/ncsu/crsc/pdf/crsc-tr03-11.pdf

  8. Nicosia, G., Cutello, V., Bentley, P., Timmis, J. (eds.): ICARIS 2004. LNCS, vol. 3239. Springer, Heidelberg (2004)

    Google Scholar 

  9. Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: A characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dunbrack Jr., R.L., Cohen, F.E.: Bayesian statistical analysis of protein sidechain rotamer preferences. Protein Science 6, 1661–1681 (1997)

    Article  Google Scholar 

  11. Purisima, E.O., Scheraga, H.A.: An approach to the multiple-minima problem in protein folding by relaxing dimensionality. test on enkephalin. J. Mol. Biol. 196, 697–709 (1987)

    Article  Google Scholar 

  12. Li, Z., Scheraga, H.A.: Structure and free energy of complex thermodynamics systems. J. Mol. Stru. 179, 333–352 (1988)

    Article  Google Scholar 

  13. Kaiser Jr., C.E., Lamont, G.B., Merkle, L.D., Gates Jr., G.H., Patcher, R.: Polypeptide structure prediction: Real-valued versus binary hybrid genetic algorithms. In: Proc. of the ACM Symposium on Applied Computing (SAC), San Jose, CA, March 1997, pp. 279–286 (1997)

    Google Scholar 

  14. Bindewald, E., Hesser, J., Männer, R.: Implementing genetic algorithms with sterical constraints for protein structure prediction. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 959–967. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Rabow, A.A., Scheraga, H.A.: Improved genetic algorithm for the protein folding problem by use of cartesian combination operators. Protein Science 5, 1800–1815 (1996)

    Article  Google Scholar 

  16. Baldi, P., Pollastri, G.: The Principled Design of Large-Scale Recursive Neural Network Architectures-DAG-RNNs and the Protein Structure Prediction Problem. Journal of Machine Learning Research 4, 575–603 (2003)

    MATH  Google Scholar 

  17. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice- Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  18. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representation of quasi Newton matrices and their use in limited memory methods. Mathematical Programming 63(4), 129–156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. McLachlan, A.D.: Rapid Comparison of Protein Structures. Acta Cryst. A38, 871–873 (1982)

    Article  Google Scholar 

  20. Huang, C.C., Couch, G.S., Pettersen, E.F., Ferrin, T.E.: Chimera: An Extensible Molecular Modeling Application Constructed Using Standard Components. In: Pacific Symposium on Biocomputing, vol. 1, p. 724 (1996)

    Google Scholar 

  21. Hiroyasu, T., Miki, M., Iwahashi, T., Okamoto, Y.: Dual Individual Distributed Genetic Algorithm for Minimizing the Energy of Protein Tertiary Structure, BioGEC 2003. In: Biological Applications of Genetic and Evolutionary Computation, Genetic and Evolutionary Computation Conference 2003 (GECCO 2003), Chicago, Illinois, USA, July 12-16 (2003)

    Google Scholar 

  22. Hansmann, U.H.E., Okamoto, Y.: Prediction of Peptide Conformation by the Multicanonical Algorithm. In: Landau, D.P., Mon, K.K., Schttler, H.B. (eds.) Computer Simulation Studies in Condensed Matter Physics VI, p. 168. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  23. Foloppe, N., MacKerell Jr., A.D.: All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 21, 86–104 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anile, A.M., Cutello, V., Narzisi, G., Nicosia, G., Spinella, S. (2006). Lipschitzian Pattern Search and Immunological Algorithm with Quasi-Newton Method for the Protein Folding Problem: An Innovative Multistage Approach. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_38

Download citation

  • DOI: https://doi.org/10.1007/11731177_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics