Abstract
Locally linear embedding (Lle) is a powerful approach for mapping high-dimensional data nonlinearly to a lower-dimensional space. However, when the training examples are not densely sampled, Lle often returns invalid results. In this paper, the Nl 3 e (Neighbor Line-based Lle) approach is proposed, which generates some virtual examples with the help of neighbor line such that the Lle learning can be executed on an enriched training set. Experiments show that Nl 3 e outperforms Lle in visualization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)
Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, London (1994)
de Ridder, D., Loog, M., Reinders, M.J.T.: Local fisher embedding. In: Proceddings of the 17th International Conference on Pattern Recognition, Cambridge, UK, pp. 295–298 (2004)
de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Overmayer, K. (eds.) Advances in Neural Information Processing Systems, Cambridge, MA, vol. 15, pp. 705–712. MIT Press, Cambridge (2002)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2004)
Geng, X., Zhan, D.-C., Zhou, Z.-H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics 35, 1098–1107 (2005)
Jolliffe, Z.T.: Principal Component Analysis. Springer, Heidelberg (1986)
Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Transactions on Neural networks 10, 439–443 (1999)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. Science 290, 2323–2326 (2000)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognition Letters 23, 1711–1719 (2002)
Zhang, J., Shen, H., Zhou, Z.-H.: Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 296–304. Springer, Heidelberg (2004)
Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classifiers for pattern classification. Pattern Recognition 37, 1307–1309 (2004)
Zhou, Z.-H., Jiang, Y.: Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine 7, 37–42 (2003)
Zhou, Z.-H., Jiang, Y.: NeC4.5: neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering 16, 770–773 (2004)
Zhou, Z.-H., Jiang, Y., Chen, S.-F.: Extracing symbolic rules from trained neural network ensembles. AI Communications 16, 3–15 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhan, DC., Zhou, ZH. (2006). Neighbor Line-Based Locally Linear Embedding. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_94
Download citation
DOI: https://doi.org/10.1007/11731139_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)