Nothing Special   »   [go: up one dir, main page]

Skip to main content

Neighbor Line-Based Locally Linear Embedding

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

  • 3169 Accesses

Abstract

Locally linear embedding (Lle) is a powerful approach for mapping high-dimensional data nonlinearly to a lower-dimensional space. However, when the training examples are not densely sampled, Lle often returns invalid results. In this paper, the Nl 3 e (Neighbor Line-based Lle) approach is proposed, which generates some virtual examples with the help of neighbor line such that the Lle learning can be executed on an enriched training set. Experiments show that Nl 3 e outperforms Lle in visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  2. Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  3. de Ridder, D., Loog, M., Reinders, M.J.T.: Local fisher embedding. In: Proceddings of the 17th International Conference on Pattern Recognition, Cambridge, UK, pp. 295–298 (2004)

    Google Scholar 

  4. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Overmayer, K. (eds.) Advances in Neural Information Processing Systems, Cambridge, MA, vol. 15, pp. 705–712. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  6. Geng, X., Zhan, D.-C., Zhou, Z.-H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on System, Man and Cybernetics-Part B: Cybernetics 35, 1098–1107 (2005)

    Article  Google Scholar 

  7. Jolliffe, Z.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  8. Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Transactions on Neural networks 10, 439–443 (1999)

    Article  Google Scholar 

  9. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  11. Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognition Letters 23, 1711–1719 (2002)

    Article  MATH  Google Scholar 

  12. Zhang, J., Shen, H., Zhou, Z.-H.: Unified locally linear embedding and linear discriminant analysis algorithm (ULLELDA) for face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 296–304. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classifiers for pattern classification. Pattern Recognition 37, 1307–1309 (2004)

    Article  MATH  Google Scholar 

  14. Zhou, Z.-H., Jiang, Y.: Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble. IEEE Transactions on Information Technology in Biomedicine 7, 37–42 (2003)

    Article  Google Scholar 

  15. Zhou, Z.-H., Jiang, Y.: NeC4.5: neural ensemble based C4.5. IEEE Transactions on Knowledge and Data Engineering 16, 770–773 (2004)

    Article  Google Scholar 

  16. Zhou, Z.-H., Jiang, Y., Chen, S.-F.: Extracing symbolic rules from trained neural network ensembles. AI Communications 16, 3–15 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhan, DC., Zhou, ZH. (2006). Neighbor Line-Based Locally Linear Embedding. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_94

Download citation

  • DOI: https://doi.org/10.1007/11731139_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics