Abstract
An adaptive intrusion detection algorithm which combines the Adaptive Resonance Theory(ART) with the Concept Vector and the Mecer-Kernel is presented. Compared to the supervised- and the clustering-based Intrusion Detection Systems(IDSs), our algorithm can detect unknown types of intrusions in on-line by generating clusters incrementally.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, W., Stolfo, S., Mok, K.: A Data Mining Framework for Building Intrusion Detection Models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)
Hu, W., Liao, Y., Vemuri, V.: Robust Support Vector Machines for Anomaly Detection in Computer Security. In: Proceedings of the International Conference on Machine Learning and Applications, pp. 168–174 (2003)
Portnoy, L., Eskin, E., Stolfo, S.: Intrusion Detection with Unlabeled Data using Clustering. In: Proceedings of the ACM Workshop on Data Mining Applied to Security (2001)
Ye, N., Li, X.: A Scalable Clustering Technique for Intrusion Signature Recognition. In: Proceedings of the IEEE Man, Systems and Cybernetics Information Assurance Workshop (2001)
Liu, Y., Chen, K., Liao, X., Zhang, W.: A Genetic Clustering Method for Intrusion Detection. Pattern Recognition 37(5), 927–942 (2004)
Dhillon, I., Modha, D.: ‘Concept Decomposition for Large Sparse Text Data using Clustering’, Technical Report RJ 10147(95022), IBM Almaden Research Center (1999)
Girolami, M.: Mercer Kernel-based Clustering in Feature Space. IEEE Transaction on Neural Networks 13(3), 780–784 (2002)
Baraldi, A., Chang, E.: Simplified ART: A New Class of ART Algorithms, International Computer Science Institute, TR 98-004 (1998)
KDD Cup 1999 Data (1999), Available in, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Results of the KDD1999, Classifier Learning Contest (1999), Available in, http://wwwcse.ucsd.edu/users/elkan/clresults.html.
Kayacik, H., Zincir-Heywood, A., Heywood, M.: On the capability of anSOM based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1808–1813 (2003)
Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, H., Chung, Y., Park, D. (2006). An Adaptive Intrusion Detection Algorithm Based on Clustering and Kernel-Method. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_70
Download citation
DOI: https://doi.org/10.1007/11731139_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)