Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Adaptive Intrusion Detection Algorithm Based on Clustering and Kernel-Method

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

Abstract

An adaptive intrusion detection algorithm which combines the Adaptive Resonance Theory(ART) with the Concept Vector and the Mecer-Kernel is presented. Compared to the supervised- and the clustering-based Intrusion Detection Systems(IDSs), our algorithm can detect unknown types of intrusions in on-line by generating clusters incrementally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, W., Stolfo, S., Mok, K.: A Data Mining Framework for Building Intrusion Detection Models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)

    Google Scholar 

  2. Hu, W., Liao, Y., Vemuri, V.: Robust Support Vector Machines for Anomaly Detection in Computer Security. In: Proceedings of the International Conference on Machine Learning and Applications, pp. 168–174 (2003)

    Google Scholar 

  3. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion Detection with Unlabeled Data using Clustering. In: Proceedings of the ACM Workshop on Data Mining Applied to Security (2001)

    Google Scholar 

  4. Ye, N., Li, X.: A Scalable Clustering Technique for Intrusion Signature Recognition. In: Proceedings of the IEEE Man, Systems and Cybernetics Information Assurance Workshop (2001)

    Google Scholar 

  5. Liu, Y., Chen, K., Liao, X., Zhang, W.: A Genetic Clustering Method for Intrusion Detection. Pattern Recognition 37(5), 927–942 (2004)

    Article  Google Scholar 

  6. Dhillon, I., Modha, D.: ‘Concept Decomposition for Large Sparse Text Data using Clustering’, Technical Report RJ 10147(95022), IBM Almaden Research Center (1999)

    Google Scholar 

  7. Girolami, M.: Mercer Kernel-based Clustering in Feature Space. IEEE Transaction on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  8. Baraldi, A., Chang, E.: Simplified ART: A New Class of ART Algorithms, International Computer Science Institute, TR 98-004 (1998)

    Google Scholar 

  9. KDD Cup 1999 Data (1999), Available in, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  10. Results of the KDD1999, Classifier Learning Contest (1999), Available in, http://wwwcse.ucsd.edu/users/elkan/clresults.html.

  11. Kayacik, H., Zincir-Heywood, A., Heywood, M.: On the capability of anSOM based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1808–1813 (2003)

    Google Scholar 

  12. Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H., Chung, Y., Park, D. (2006). An Adaptive Intrusion Detection Algorithm Based on Clustering and Kernel-Method. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_70

Download citation

  • DOI: https://doi.org/10.1007/11731139_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics