Abstract
An adaptive intrusion detection algorithm which combines the Adaptive Resonance Theory(ART) with the Concept Vector and the Mecer-Kernel is presented. Compared to the supervised- and the clustering-based Intrusion Detection Systems(IDSs), our algorithm can detect unknown types of intrusions in on-line by generating clusters incrementally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, W., Stolfo, S., Mok, K.: A Data Mining Framework for Building Intrusion Detection Models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 120–132 (1999)
Hu, W., Liao, Y., Vemuri, V.: Robust Support Vector Machines for Anomaly Detection in Computer Security. In: Proceedings of the International Conference on Machine Learning and Applications, pp. 168–174 (2003)
Portnoy, L., Eskin, E., Stolfo, S.: Intrusion Detection with Unlabeled Data using Clustering. In: Proceedings of the ACM Workshop on Data Mining Applied to Security (2001)
Ye, N., Li, X.: A Scalable Clustering Technique for Intrusion Signature Recognition. In: Proceedings of the IEEE Man, Systems and Cybernetics Information Assurance Workshop (2001)
Liu, Y., Chen, K., Liao, X., Zhang, W.: A Genetic Clustering Method for Intrusion Detection. Pattern Recognition 37(5), 927–942 (2004)
Dhillon, I., Modha, D.: ‘Concept Decomposition for Large Sparse Text Data using Clustering’, Technical Report RJ 10147(95022), IBM Almaden Research Center (1999)
Girolami, M.: Mercer Kernel-based Clustering in Feature Space. IEEE Transaction on Neural Networks 13(3), 780–784 (2002)
Baraldi, A., Chang, E.: Simplified ART: A New Class of ART Algorithms, International Computer Science Institute, TR 98-004 (1998)
KDD Cup 1999 Data (1999), Available in, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Results of the KDD1999, Classifier Learning Contest (1999), Available in, http://wwwcse.ucsd.edu/users/elkan/clresults.html.
Kayacik, H., Zincir-Heywood, A., Heywood, M.: On the capability of anSOM based intrusion detection system. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1808–1813 (2003)
Ambwani, T.: Multi class support vector machine implementation to intrusion detection. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2300–2305 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, H., Chung, Y., Park, D. (2006). An Adaptive Intrusion Detection Algorithm Based on Clustering and Kernel-Method. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_70
Download citation
DOI: https://doi.org/10.1007/11731139_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)