Abstract
Mobile user data mining is a field that focuses on extracting interesting pattern and knowledge out from data generated by mobile users. Group pattern is a type of mobile user data mining method. In group pattern mining, group patterns from a given user movement database is found based on spatio-temporal distances. In this paper, we propose an improvement of efficiency using area method for locating mobile users and using sliding window for static group pattern mining. This reduces the complexity of valid group pattern mining problem. We support the use of static method, which uses areas and sliding windows instead to find group patterns thus reducing the complexity of the mining problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikat, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the 20th VLDB (1994)
Agrawal, R., Srikat, R.: Mining Sequential Patterns. In: Proc. of 11th ICDE (1995)
Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice, 3rd edn. Springer, Heidelberg (1994)
Chakrabarti, S., Sarawagi, S., Dom, B.: Mining Surprising Patterns using Temporal Description Length. In: Proc. of 24th VLDB (1998)
Forlizzi, L., Guting, R.H., Nardelli, E., Schneider, M.: A Data Model and Data Structures for Moving Objects Databases. ACM SIGMOD Record (2000)
Forsyth, D.R.: Group Dynamics. Wadsworth, Belmont (1999)
Han, J., Dong, G., Yin, Y.: Efficient Mining of Partial Periodic Patterns in Time Series Database. In: Proc. of 15th ICDE (1999)
Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proc. of ACM SIGMOD (2000)
Han, J., Plank, A.W.: Background for Association Rules and Cost Estimate of Selected Mining Algorithms. In: Proc. of the 5th CIKM (1996)
Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographical Information Databases. In: Proc. of 4th Int. Symp. on Advances in Spatial Databases (1995)
Roddick, J.F., Lees, B.G.: Paradigms for Spatial and Spatio-Temporal Data Mining. Geographic Data Mining and Knowledge Discovery (2001)
Roddick, J.F., Spiliopoulou, M.: A Survey of Temporal Knowledge Discovery Paradigms and Methods. IEEE Trans. on Knowledge and Data Engineering (2002)
Wang, W., Yang, J., Yu, P.S.: InfoMiner+: Mining Partial Periodic Patterns in Time Series Data. IEEE Transaction on Knowledge and Data Engineering (2002)
Zarchan, P.: Global Positioning System: Theory and Applications. In: American Institute of Aeronautics and Astronautics, vol. I (1996)
Reed Electronics Research RER – The mobile phone industry – a strategic overview (October 2002)
Varshney, U., Vetter, R., Kalakota, R.: Mobile commerce: A new frontier. In: IEEE Computer: Special Issue on E-commerce, October 2000, pp. 32–38 (2000)
Wang, Y., Lim, E.-P., Hwang, S.-Y.: On Mining Group Patterns from Mobile Users. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 287–296. Springer, Heidelberg (2003)
Wang, Y., Lim, E.-P., Hwang, S.-Y.: Efficient Group Pattern Mining Using Data Summarization. In: Proc. of the 15th International Conference on Database and Expert Systems Applications – DEXA 2004. LNCS, vol. 2973, pp. 895–907. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goh, J., Taniar, D., Lim, EP. (2006). SGPM: Static Group Pattern Mining Using Apriori-Like Sliding Window. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_48
Download citation
DOI: https://doi.org/10.1007/11731139_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)