Nothing Special   »   [go: up one dir, main page]

Skip to main content

SGPM: Static Group Pattern Mining Using Apriori-Like Sliding Window

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

Abstract

Mobile user data mining is a field that focuses on extracting interesting pattern and knowledge out from data generated by mobile users. Group pattern is a type of mobile user data mining method. In group pattern mining, group patterns from a given user movement database is found based on spatio-temporal distances. In this paper, we propose an improvement of efficiency using area method for locating mobile users and using sliding window for static group pattern mining. This reduces the complexity of valid group pattern mining problem. We support the use of static method, which uses areas and sliding windows instead to find group patterns thus reducing the complexity of the mining problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikat, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the 20th VLDB (1994)

    Google Scholar 

  2. Agrawal, R., Srikat, R.: Mining Sequential Patterns. In: Proc. of 11th ICDE (1995)

    Google Scholar 

  3. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice, 3rd edn. Springer, Heidelberg (1994)

    Book  Google Scholar 

  4. Chakrabarti, S., Sarawagi, S., Dom, B.: Mining Surprising Patterns using Temporal Description Length. In: Proc. of 24th VLDB (1998)

    Google Scholar 

  5. Forlizzi, L., Guting, R.H., Nardelli, E., Schneider, M.: A Data Model and Data Structures for Moving Objects Databases. ACM SIGMOD Record (2000)

    Google Scholar 

  6. Forsyth, D.R.: Group Dynamics. Wadsworth, Belmont (1999)

    Google Scholar 

  7. Han, J., Dong, G., Yin, Y.: Efficient Mining of Partial Periodic Patterns in Time Series Database. In: Proc. of 15th ICDE (1999)

    Google Scholar 

  8. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: Proc. of ACM SIGMOD (2000)

    Google Scholar 

  9. Han, J., Plank, A.W.: Background for Association Rules and Cost Estimate of Selected Mining Algorithms. In: Proc. of the 5th CIKM (1996)

    Google Scholar 

  10. Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographical Information Databases. In: Proc. of 4th Int. Symp. on Advances in Spatial Databases (1995)

    Google Scholar 

  11. Roddick, J.F., Lees, B.G.: Paradigms for Spatial and Spatio-Temporal Data Mining. Geographic Data Mining and Knowledge Discovery (2001)

    Google Scholar 

  12. Roddick, J.F., Spiliopoulou, M.: A Survey of Temporal Knowledge Discovery Paradigms and Methods. IEEE Trans. on Knowledge and Data Engineering (2002)

    Google Scholar 

  13. Wang, W., Yang, J., Yu, P.S.: InfoMiner+: Mining Partial Periodic Patterns in Time Series Data. IEEE Transaction on Knowledge and Data Engineering (2002)

    Google Scholar 

  14. Zarchan, P.: Global Positioning System: Theory and Applications. In: American Institute of Aeronautics and Astronautics, vol. I (1996)

    Google Scholar 

  15. Reed Electronics Research RER – The mobile phone industry – a strategic overview (October 2002)

    Google Scholar 

  16. Varshney, U., Vetter, R., Kalakota, R.: Mobile commerce: A new frontier. In: IEEE Computer: Special Issue on E-commerce, October 2000, pp. 32–38 (2000)

    Google Scholar 

  17. Wang, Y., Lim, E.-P., Hwang, S.-Y.: On Mining Group Patterns from Mobile Users. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 287–296. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Wang, Y., Lim, E.-P., Hwang, S.-Y.: Efficient Group Pattern Mining Using Data Summarization. In: Proc. of the 15th International Conference on Database and Expert Systems Applications – DEXA 2004. LNCS, vol. 2973, pp. 895–907. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goh, J., Taniar, D., Lim, EP. (2006). SGPM: Static Group Pattern Mining Using Apriori-Like Sliding Window. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_48

Download citation

  • DOI: https://doi.org/10.1007/11731139_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics