Abstract
In this paper a novel optimization model for bilevel hierarchical clustering has been proposed. This is a hard nonconvex, nonsmooth optimization problem for which we investigate an efficient technique based on DC (Difference of Convex functions) programming and DCA (DC optimization Algorithm). Preliminary numerical results on some artificial and real-world databases show the efficiency and the superiority of this approach with respect to related existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belghiti, M.T., Le Thi, H.A., Tao, P.D.: Clustering via DC programming and DCA. Modelling, Computation and Optimization in Information Systems and Management Sciences Hermes Science Publishing, pp. 499–507 (2004)
Fisher, D.: Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research 4, 147–180 (1996)
Waters, G., Lim, S.G.: Applying clustering algorithms to multicast group hierarchies, Technical Report No. 4-03 (August 2003)
Waters, G., Crawford, J., Lim, S.G.: Optimising multicast structures for grid computing. Computer Communications 27, 1389–1400 (2004)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)
Neumann, J., Schnörr, C., Steidl, G.: SVM-Based Feature Selection by Direct Objective Minimisation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 212–219. Springer, Heidelberg (2004)
Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications, Habilitation, Université de Rouen (July 1997)
Le Thi, H.A., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization 11(3), 253–285 (1997)
Le Thi, H.A., Tao, P.D., Muu, L.D.: Exact penalty in DC programming. Vietnam Journal of Mathematics 27(2), 169–178 (1999)
Le Thi, H.A., Tao, P.D.: DC Programming: Theory, Algorithms and Applications. The State of the Art. In: Proceedings of The First International Workshop on Global Constrained Optimization and Constraint Satisfaction (Cocos 2002), Valbonne-Sophia Antipolis, France, October 2-4, pages 28 (2002)
Le Thi, H.A., Tao, P.D.: Large Scale Molecular Optimization from distances matrices by a DC optimization approach. SIAM Journal of Optimization 14(1), 77–116 (2003)
Le Thi, H.A., Tao, P.D.: The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research 133, 23–46 (2005)
Le Thi, H.A., Tao, P.D., Van Ngai, H.: Exact penalty techniques in DC programming (Submitted)
Jia, L., Bagirov, A., Ouveysi, I., Rubinov, A.M.: Optimization based clustering algorithms in Multicast group hierarchies. In: Proceedings of the Australian Telecommunications, Networks and Applications Conference (ATNAC 2003), Melbourne Australia (2003) (published on CD, ISNB 0-646-42229-4)
Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The Computer Journal 26(4) (1983)
Tao, P.D., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica, dedicated to Professor Hoang Tuy on the occasion of his 70th birthday 22(1), 289–355 (1997)
Tao, P.D., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optimization 8, 476–505 (1998)
Wong, T., Katz, R., McCanne, S.: A Preference Clustering Protocol for Large-Scale Multicast Applications. In: Rizzo, L., Fdida, S. (eds.) NGC 1999. LNCS, vol. 1736, pp. 1–18. Springer, Heidelberg (1999)
Weber, S., Schüle, T., Schnörr, C.: Prior Learning and Convex- Concave Regularization of Binary Tomography Electr. Notes in Discr. Math. 20, 313–327 (2005)
Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary Tomography by Iterating Linear Programs. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Computational Imaging and Vision - Geometric Properties from Incomplete Data. Kluwer Academic Press, Dordrecht (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Minh, L.H., An, L.T.H., Tao, P.D. (2006). Hierarchical Clustering Based on Mathematical Optimization. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_20
Download citation
DOI: https://doi.org/10.1007/11731139_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33206-0
Online ISBN: 978-3-540-33207-7
eBook Packages: Computer ScienceComputer Science (R0)