Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hierarchical Clustering Based on Mathematical Optimization

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

Abstract

In this paper a novel optimization model for bilevel hierarchical clustering has been proposed. This is a hard nonconvex, nonsmooth optimization problem for which we investigate an efficient technique based on DC (Difference of Convex functions) programming and DCA (DC optimization Algorithm). Preliminary numerical results on some artificial and real-world databases show the efficiency and the superiority of this approach with respect to related existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belghiti, M.T., Le Thi, H.A., Tao, P.D.: Clustering via DC programming and DCA. Modelling, Computation and Optimization in Information Systems and Management Sciences Hermes Science Publishing, pp. 499–507 (2004)

    Google Scholar 

  2. Fisher, D.: Iterative optimization and simplification of hierarchical clusterings. Journal of Artificial Intelligence Research 4, 147–180 (1996)

    MATH  Google Scholar 

  3. Waters, G., Lim, S.G.: Applying clustering algorithms to multicast group hierarchies, Technical Report No. 4-03 (August 2003)

    Google Scholar 

  4. Waters, G., Crawford, J., Lim, S.G.: Optimising multicast structures for grid computing. Computer Communications 27, 1389–1400 (2004)

    Article  Google Scholar 

  5. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  6. Neumann, J., Schnörr, C., Steidl, G.: SVM-Based Feature Selection by Direct Objective Minimisation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 212–219. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications, Habilitation, Université de Rouen (July 1997)

    Google Scholar 

  8. Le Thi, H.A., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. Journal of Global Optimization 11(3), 253–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Le Thi, H.A., Tao, P.D., Muu, L.D.: Exact penalty in DC programming. Vietnam Journal of Mathematics 27(2), 169–178 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Le Thi, H.A., Tao, P.D.: DC Programming: Theory, Algorithms and Applications. The State of the Art. In: Proceedings of The First International Workshop on Global Constrained Optimization and Constraint Satisfaction (Cocos 2002), Valbonne-Sophia Antipolis, France, October 2-4, pages 28 (2002)

    Google Scholar 

  11. Le Thi, H.A., Tao, P.D.: Large Scale Molecular Optimization from distances matrices by a DC optimization approach. SIAM Journal of Optimization 14(1), 77–116 (2003)

    Article  MATH  Google Scholar 

  12. Le Thi, H.A., Tao, P.D.: The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals of Operations Research 133, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Le Thi, H.A., Tao, P.D., Van Ngai, H.: Exact penalty techniques in DC programming (Submitted)

    Google Scholar 

  14. Jia, L., Bagirov, A., Ouveysi, I., Rubinov, A.M.: Optimization based clustering algorithms in Multicast group hierarchies. In: Proceedings of the Australian Telecommunications, Networks and Applications Conference (ATNAC 2003), Melbourne Australia (2003) (published on CD, ISNB 0-646-42229-4)

    Google Scholar 

  15. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The Computer Journal 26(4) (1983)

    Google Scholar 

  16. Tao, P.D., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications. Acta Mathematica Vietnamica, dedicated to Professor Hoang Tuy on the occasion of his 70th birthday 22(1), 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Tao, P.D., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Optimization 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wong, T., Katz, R., McCanne, S.: A Preference Clustering Protocol for Large-Scale Multicast Applications. In: Rizzo, L., Fdida, S. (eds.) NGC 1999. LNCS, vol. 1736, pp. 1–18. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Weber, S., Schüle, T., Schnörr, C.: Prior Learning and Convex- Concave Regularization of Binary Tomography Electr. Notes in Discr. Math. 20, 313–327 (2005)

    Article  MATH  Google Scholar 

  20. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary Tomography by Iterating Linear Programs. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Computational Imaging and Vision - Geometric Properties from Incomplete Data. Kluwer Academic Press, Dordrecht (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Minh, L.H., An, L.T.H., Tao, P.D. (2006). Hierarchical Clustering Based on Mathematical Optimization. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_20

Download citation

  • DOI: https://doi.org/10.1007/11731139_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics