Nothing Special   »   [go: up one dir, main page]

Skip to main content

Particle Swarm for the Traveling Salesman Problem

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2006)

Abstract

This paper presents a competitive Particle Swarm Optimization algorithm for the Traveling Salesman Problem, where the velocity operator is based upon local search and path-relinking procedures. The paper proposes two versions of the algorithm, each of them utilizing a distinct local search method. The proposed heuristics are compared with other Particle Swarm Optimization algorithms presented previously for the same problem. The results are also compared with three effective algorithms for the TSP. A computational experiment with benchmark instances is reported. The results show that the method proposed in this paper finds high quality solutions and is comparable with the effective approaches presented for the TSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  2. Bellmore, M., Nemhauser, G.L.: The Traveling Salesman Problem: A Survey. Operations Research 16, 538–582 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Concorde TSP Solver (last access January 18, 2005) http://www.tsp.gatech.edu/concorde.html

  4. Cook, W.J., Seymour, P.: Tour Merging via Branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  6. Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000)

    Google Scholar 

  7. Feo, T.A., Resende, M.G.C.: A Probabilistic Heuristic for a Computationally Difficult Set Covering Problem. Operations Research Letters 8, 67–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glover, F.: Parametric Combinations of Local Job Shop Rules, ch. IV, ONR Research Memorandum N. 117, GSIA. Carnegie Mellon University, Pittsburgh, PA (1963)

    Google Scholar 

  9. Glover, F., Laguna, M., Martí, R.: Fundamentals of Scatter Search and Path Relinking. Control and Cybernetics 29(3), 653–684 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Gutin, G., Punnen, A.P. (eds.): Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  11. Heppner, F., Grenander, U.: A Stochastic Nonlinear Model for Coordinated Bird Flocks. In: Krasner, S. (ed.) The Ubiquity of Caos, AAAS Publications, Washington (1990)

    Google Scholar 

  12. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  13. Johnson, D.S., McGeoh, L.A.: Experimental Analysis of Heuristics for the STSP. In: Guttin, G., Punnen, A.P. (eds.) Traveling Salesman Problem and Its Variations, Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  15. Lin, S., Kernighan, B.: An Effective Heuristic Algorithm for the Traveling-salesman Problem. Operations Research 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Machado, T.R., Lopes, H.S.: A Hybrid Particle Swarm Optimization Model for the Traveling Salesman Problem. In: Ribeiro, H., Albrecht, R.F., Dobnikar, A. (eds.) Natural Computing Algorithms, pp. 255–258. SpringerWienNewYork, Wien (2005)

    Chapter  Google Scholar 

  17. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent Computation Program, C3P Report 826 (1989)

    Google Scholar 

  18. Onwubulu, G.C., Clerc, M.: Optimal Path for Automated Drilling Operations by a New Heuristic Approach Using Particle Swarm Optimization. International Journal of Production Research 42(3), 473–491 (2004)

    Article  MATH  Google Scholar 

  19. Pang, W., Wang, K.-P., Zhou, C.-G., Dong, L.-J., Liu, M., Zhang, H.-Y., Wang, J.-Y.: Modified Particle Swarm Optimization Based on Space Transformation for Solving Traveling Salesman Problem. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 2342–2346 (2004)

    Google Scholar 

  20. Pomeroy, P.: An Introduction to Particle Swarm Optimization, Electronic document available at www.adaptiveview.com/ipsop1.html

  21. Reeves, W.T.: Particle Systems Technique for Modeling a Class of Fuzzy Objects. Computer Graphics 17(3), 359–376 (1983)

    Article  Google Scholar 

  22. Reinelt, G.: TSPLIB (1995), available: http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

  23. Reynolds, C.W.: Flocks, Herds and Schools: a Distributed Behavioral Model. Computer Graphics 21(4), 24–34 (1987)

    Article  Google Scholar 

  24. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Proceedings of Evolutionary Programming, EP 1994, pp. 131–139. World Scientific, River Edge, NJ (1994)

    Google Scholar 

  25. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  26. Wang, K.-P., Huang, L., Zhou, C.-G., Pang, W.: Particle Swarm Optimization for Traveling Salesman Problem. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, pp. 1583–1585 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldbarg, E.F.G., de Souza, G.R., Goldbarg, M.C. (2006). Particle Swarm for the Traveling Salesman Problem. In: Gottlieb, J., Raidl, G.R. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2006. Lecture Notes in Computer Science, vol 3906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730095_9

Download citation

  • DOI: https://doi.org/10.1007/11730095_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33178-0

  • Online ISBN: 978-3-540-33179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics