Abstract
A general Hybrid Minimum Principle (HMP) for hybrid optimal control problems (HOCPs) is presented in [1, 2, 3, 4] and in [4, 5], a class of efficient, provably convergent Hybrid Minimum Principle (HMP) algorithms were obtained based upon the HMP. The notion of optimality zones (OZs) ([3, 4]) provides a theoretical framework for the computation of optimal location (i.e. discrete state) schedules for HOCPs (i.e. discrete state sequences with the associated switching times and states). This paper presents the algorithm HMPOZ which fully integrates the prior computation of the OZs into the HMP algorithms class. Summing (a) the computational investment in the construction of the OZs for a given HOCP, and (b) the complexity of (i) the computation of the optimal schedule, (ii) the optimal switching time and optimal switching state sequence, and (iii) the optimal continuous control input, yields a complexity estimate for the algorithm HMPOZ which is linear (i.e. O(L)) in the number of switching times L.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shaikh, M.S., Caines, P.E.: On trajectory optimization for hybrid systems: Theory and algorithms for fixed schedules. In: Proc. 41st IEEE Int. Conf. Decision and Control, Las Vegas, pp. 1997–1998 (2002)
Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimization of trajectories, switching times, and location schedules. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 466–481. Springer, Heidelberg (2003)
Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Analysis and algorithms for trajectory and schedule optimization. In: Proc. 42nd IEEE Int. Conf. Decision and Control, Maui, Hawaii, pp. 2144–2149 (2003)
Shaikh, M.S.: Optimal Control of Hybrid Systems: Theory and Algorithms. PhD thesis, Department of Electrical and Computer Engineering, McGill University, Montréal, Canada (2004), Available: http://www.cim.mcgill.ca/~msshaikh/publications/thesis.pdf
Shaikh, M.S., Caines, P.E.: On the hybrid optimal control problem: Theory and algorithms. revised for IEEE Trans. Automat. Contr (2005)
Shaikh, M.S., Caines, P.E.: On the optimal control of hybrid systems: Optimization of switching times and combinatoric location schedules. In: Proc. American Control Conference, Denver, pp. 2773–2778 (2003)
Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE Trans. Automat. Contr. 49(1), 2–16 (2004)
Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Contr. 43(1), 31–45 (1998)
Branicky, M.S., Mitter, S.K.: Algorithms for optimal hybrid control. In: Proc. 34th IEEE Int. Conf. Decision and Control, New Orleans, pp. 2661–2666 (1995)
Sussmann, H.: A maximum principle for hybrid optimal control problems. In: Proc. 38th IEEE Int. Conf. Decision and Control, Phoenix, pp. 425–430 (1999)
Riedinger, P., Kratz, F., Iung, C., Zanne, C.: Linear quadratic optimization of hybrid systems. In: Proc. 38th IEEE Int. Conf. Decision and Control, Phoenix, pp. 3059–3064 (1999)
Tomiyama, K.: Two-stage optimal control problems and optimality conditions. J. Economic Dynamics and Control 9(3), 317–337 (1985)
Clarke, F.H., Vinter, R.B.: Optimal multiprocesses. SIAM J. Control and Optimization 27(5), 1072–1079 (1989)
Clarke, F.H., Vinter, R.B.: Applications of optimal multiprocesses. SIAM J. Control and Optimization 27(5), 1048–1071 (1989)
Egerstedt, M., Wardi, Y., Delmotte, F.: Optimal control of switching times in switched dynamical systems. In: Proc. 42nd IEEE Int. Conf. Decision and Control, Maui, HI, pp. 2138–2143 (2003)
Wardi, Y., Egerstedt, M., Boccadoro, M., Verriest, E.: Optimal control of switching surfaces. In: Proc. 43rd IEEE Int. Conf. Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 1854–1859 (2004)
Axelsson, H., Egerstedt, M., Wardi, Y., Vachtsevanos, G.: Algorithm for switching-time optimization in hybrid dynamical systems. In: Proc. 2005 International Symposium on Intelligent Control/13th Mediterranean Conference on Control and Automation, Cypres, pp. 256–261 (2005)
Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Contr. 40(9), 1528–1538 (1995)
Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for hybrid control. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 393–406. Springer, Heidelberg (2002)
Giua, A., Seatzu, C., Mee, C.V.D.: Optimal control of autonomous linear systems switched with a pre-assigned finite sequence. In: Proc. 2001 IEEE International Symposium on Intelligent Control, pp. 144–149 (2001)
Giua, A., Seatzu, C., Mee, C.V.D.: Optimal control of switched autonomous linear systems. In: Proc. 40th IEEE Int. Conf. Decision and Control, Orlando, pp. 2472–2477 (2001)
Bemporad, A., Giua, A., Seatzu, C.: A master-slave algorithm for the optimal control of continuous-time switched affine systems. In: Proc. 41st IEEE Int. Conf. Decision and Control, Las Vegas, pp. 1976–1981 (2002)
Shaikh, M.S., Caines, P.E.: Optimality zone algorithms for hybrid systems computation and control. Technical report, ECE Department, McGill University (2005)
Caines, P.E., Shaikh, M.S.: Optimality zone algorithms for hybrid control systems. IEEE Trans. Automat. Contr (submitted to, 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caines, P.E., Shaikh, M.S. (2006). Optimality Zone Algorithms for Hybrid Systems: Efficient Algorithms for Optimal Location and Control Computation. In: Hespanha, J.P., Tiwari, A. (eds) Hybrid Systems: Computation and Control. HSCC 2006. Lecture Notes in Computer Science, vol 3927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730637_12
Download citation
DOI: https://doi.org/10.1007/11730637_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33170-4
Online ISBN: 978-3-540-33171-1
eBook Packages: Computer ScienceComputer Science (R0)