Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Divide & Conquer Strategy for Improving Efficiency and Probability of Success in Genetic Programming

  • Conference paper
Genetic Programming (EuroGP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3905))

Included in the following conference series:

  • 940 Accesses

Abstract

A common method for improving a genetic programming search on difficult problems is either multiplying the number of runs or increasing the population size.

In this paper we propose a new search strategy which attempts to obtain a higher probability of success with smaller amounts of computational resources. We call this model Divide & Conquer since our algorithm initially partitions the search space in smaller regions that are explored independently of each other. Then, our algorithm collects the most competitive individuals found in each partition and exploits them in order to get a solution. We benchmarked our proposal on three problem domains widely used in the literature. Our results show a significant improvement of the likelihood of success while requiring less computational resources than the standard algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An Introduction. In: On the Automatic Evolution of Computer Programs and its Applications, dpunkt.verlag, Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  2. Cantu-Paz, E., Goldberg, D.E.: Are Multiple Runs of Genetic Algorithms Better than One? In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 801–812. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Daida, J.M., Samples, M.E., Byom, M.J.: Probing for Limits to Building Block Mixing with a Tunably-Difficult Problem for Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2005, June 25-29 (2005)

    Google Scholar 

  4. Daida, J.M.: Towards Identifying Populations that Increase the Likelihood of Success in Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2005, June 25-29 (2005)

    Google Scholar 

  5. Gathercole, C., Ross, P.: Small Populations Over Many Generations Can Beat Large Populations Over Few Generations in GP. In: Koza, J.R., et al. (eds.) GP, pp. 111–118. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Langdon, W.B., Poli, R.: Why Ants are Hard. In: Genetic Programming 1998. Proceedings of the Third Annual Conference (1998), pp. 193–201. Morgan Kaufmann publishers, San Francisco (1998)

    Google Scholar 

  8. Luke, S.: When Short Runs Beat Long Runs. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2001, pp. 74–80. Morgan Kaufmann publishers, San Francisco (2001)

    Google Scholar 

  9. Luke, S., Balan, G.C., Panait, L.: Population Implosion in Genetic Programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1729–1739. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)

    Article  Google Scholar 

  11. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in Engineering Parallel Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 7(2), 144–173 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fillon, C., Bartoli, A. (2006). A Divide & Conquer Strategy for Improving Efficiency and Probability of Success in Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_2

Download citation

  • DOI: https://doi.org/10.1007/11729976_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33143-8

  • Online ISBN: 978-3-540-33144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics