Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In

  • Conference paper
LATIN 2006: Theoretical Informatics (LATIN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3887))

Included in the following conference series:

Abstract

Exact exponential-time algorithms for NP-hard problems is an emerging field, and an increasing number of new results are being added continuously. Two important NP-hard problems that have been studied for decades are the treewidth and the minimum fill problems. Recently, an exact algorithm was presented by Fomin, Kratsch, and Todinca to solve both of these problems in time \({\mathcal O}^{*}\)(1.9601n). Their algorithm uses the notion of potential maximal cliques, and is able to list these in time \({\mathcal O}^{*}\)(1.9601n), which gives the running time for the above mentioned problems. We show that the number of potential maximal cliques for an arbitrary graph G on n vertices is \({\mathcal O}^{*}\)(1.8135n), and that all potential maximal cliques can be listed in \({\mathcal O}^{*}\)(1.8899n) time. As a consequence of this results, treewidth and minimum fill-in can be computed in \({\mathcal O}^{*}\)(1.8899n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: UAI 2001: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 7–15. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Foundations Comp. Sci. 11(3), 397–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchitté, V., Kratsch, D., Müller, H., Todinca, I.: On treewidth approximations. Discrete Appl. Math. 136(2-3), 183–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 - 2/(k+ 1))n algorithm for k-sat based on local search. Theor. Comput. Sci. 289(1), 69–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 462–470. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their applications to expert systems. J. Royal Statist. Soc., ser B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Robertson, N., Seymour, P.: Graph minors II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, New York (1972)

    Chapter  Google Scholar 

  16. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Woeginger, G.J.: Exact algorithms for np-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villanger, Y. (2006). Improved Exponential-Time Algorithms for Treewidth and Minimum Fill-In. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_73

Download citation

  • DOI: https://doi.org/10.1007/11682462_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32755-4

  • Online ISBN: 978-3-540-32756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics