Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Abstract

It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA may be more appropriate in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics. The experimental results show that the presented method is able to invert unknown filters with good numerical results, even if only 100 samples or less are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jutten, C., Hérault, J.: Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24 (1991)

    Google Scholar 

  2. Comon, P.: Independent component analysis, a new concept? Signal Processing 36 (1994)

    Google Scholar 

  3. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: NIPS 1995, vol. 8. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Comon, P.: Separation of sources using higher order cumulants. Advanced Algorithms and Architectures for Signal Processing (1989)

    Google Scholar 

  5. Cardoso, J.P.: Source separation using higher order moments. In: Proc. ICASSP (1989)

    Google Scholar 

  6. Puntonet, C., Mansour, A., Jutten, C.: A geometrical algorithm for blind separation of sources, GRETSI (1995)

    Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7 (1995)

    Google Scholar 

  8. Nguyen Thi, H.L., Jutten, C.: Blind source separation for convolutive mixtures. IEEE Transactions on Signal Processing 45(2) (1995)

    Google Scholar 

  9. Taleb, A., Solé-Casals, J., Jutten, C.: Quasi-Nonparametric Blind Inversion of Wiener Systems. IEEE Transactions on Signal Processing 49(5), 917–924 (2001)

    Article  Google Scholar 

  10. Solé-Casals, J., Jutten, C., Taleb, A.: Parametric approach to blind deconvolution of nonlinear channels. Neurocomputing 48, 339–355 (2002)

    Article  Google Scholar 

  11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  12. Rojas, F., Puntonet, C.G., Rodríguez, M., Rojas, I., Martín-Clemente, R.: Blind Source Separation in Post-Nonlinear Mixtures Using Competitive Learning, Simulated Annealing and a Genetic Algorithm. IEEE Trans. on SMC, Part C 34(4), 407–416 (2004)

    Article  Google Scholar 

  13. Shalvi, O., Weinstein, E.: New criteria for blind deconvolution of non-minimum phase systems (channels). IEEE Trans. on Information Theory 36(2), 312–321 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Comon, P.: Independent Component Analysis, A new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rojas, F., Solé-Casals, J., Monte-Moreno, E., Puntonet, C.G., Prieto, A. (2006). A Canonical Genetic Algorithm for Blind Inversion of Linear Channels. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_30

Download citation

  • DOI: https://doi.org/10.1007/11679363_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics