Abstract
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA may be more appropriate in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics. The experimental results show that the presented method is able to invert unknown filters with good numerical results, even if only 100 samples or less are available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jutten, C., Hérault, J.: Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24 (1991)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36 (1994)
Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: NIPS 1995, vol. 8. MIT Press, Cambridge (1996)
Comon, P.: Separation of sources using higher order cumulants. Advanced Algorithms and Architectures for Signal Processing (1989)
Cardoso, J.P.: Source separation using higher order moments. In: Proc. ICASSP (1989)
Puntonet, C., Mansour, A., Jutten, C.: A geometrical algorithm for blind separation of sources, GRETSI (1995)
Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7 (1995)
Nguyen Thi, H.L., Jutten, C.: Blind source separation for convolutive mixtures. IEEE Transactions on Signal Processing 45(2) (1995)
Taleb, A., Solé-Casals, J., Jutten, C.: Quasi-Nonparametric Blind Inversion of Wiener Systems. IEEE Transactions on Signal Processing 49(5), 917–924 (2001)
Solé-Casals, J., Jutten, C., Taleb, A.: Parametric approach to blind deconvolution of nonlinear channels. Neurocomputing 48, 339–355 (2002)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Rojas, F., Puntonet, C.G., Rodríguez, M., Rojas, I., Martín-Clemente, R.: Blind Source Separation in Post-Nonlinear Mixtures Using Competitive Learning, Simulated Annealing and a Genetic Algorithm. IEEE Trans. on SMC, Part C 34(4), 407–416 (2004)
Shalvi, O., Weinstein, E.: New criteria for blind deconvolution of non-minimum phase systems (channels). IEEE Trans. on Information Theory 36(2), 312–321 (1990)
Comon, P.: Independent Component Analysis, A new concept? Signal Processing 36(3), 287–314 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rojas, F., Solé-Casals, J., Monte-Moreno, E., Puntonet, C.G., Prieto, A. (2006). A Canonical Genetic Algorithm for Blind Inversion of Linear Channels. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_30
Download citation
DOI: https://doi.org/10.1007/11679363_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)