Nothing Special   »   [go: up one dir, main page]

Skip to main content

Projective Kalman Filter: Multiocular Tracking of 3D Locations Towards Scene Understanding

  • Conference paper
Machine Learning for Multimodal Interaction (MLMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3869))

Included in the following conference series:

Abstract

This paper presents a novel approach to the problem of estimating and tracking 3D locations of multiple targets in a scene using measurements gathered from multiple calibrated cameras. Estimation and tracking is jointly achieved by a newly conceived computational process, the Projective Kalman filter (PKF), allowing the problem to be treated in a single, unified framework. The projective nature of observed data and information redundancy among views is exploited by PKF in order to overcome occlusions and spatial ambiguity. To demonstrate the effectiveness of the proposed algorithm, the authors present tracking results of people in a SmartRoom scenario and compare these results with existing methods as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. on Signal Proc. 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Bar-Shalom, J., Fortmann, T.E.: Tracking and Data Association. Academic Press, London (1988)

    MATH  Google Scholar 

  3. Black, J., Ellis, T.: Multi Camera Image Tracking. In: Proc. Work. on Motion and Video Computing (2001)

    Google Scholar 

  4. Canton-Ferrer, C., Casas, J.R., Pard‘as, M.: Towards a bayesian approach to robust finding correspondences in multiple view geometry environments. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 281–289. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chang, T.H., Gong, S.: Tracking Multiple People with a Multi-Camera System. In: Proc. IEEE Work. on Multi-Object Tracking (2001)

    Google Scholar 

  6. Darrell, T., Gordon, G., Harville, M.: Integrated person tracking using stereo, color and pattern detection. Int. J. of Computer Vision 37(2), 175–185 (2000)

    Article  MATH  Google Scholar 

  7. Dockstader, S.L., Tekalp, A.M.: Multiple camera tracking of interacting and occluded human motion. Proc. of IEEE 89(10), 1441–1455 (2001)

    Article  MATH  Google Scholar 

  8. Dockstader, S.L., Berg, M.J., Tekalp, A.M.: Stochastic Kinematic Modeling and Feature Extraction for Gait Analysis. IEEE Trans. on Imag. Proc. 12(8), 962–976 (2003)

    Article  MathSciNet  Google Scholar 

  9. Focken, D., Stiefelhagen, R.: Towards vision-based 3D people tracking in a smart room. In: Proc. IEEE Int. Conf. on Multimodal Interfaces, pp. 400–405 (2002)

    Google Scholar 

  10. Garcia, O.: Mapping 2D images and 3D world objects in a multicamera system. Ms. Thesis. Technical University of Catalonia (2004)

    Google Scholar 

  11. Haritaoglu, I., Harwood, D., David, L.: W4: Who?When?Where?What?A real time system for detecting and tracking people. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 877–892. Springer, Heidelberg (1998)

    Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Julier, S.J., Uhlmann, J.K.: A New Extension of the Kalman Filter to Nonliner Systems. In: Proc. of AeroSense: The 11th Int.Symp. on Aerospace/Defence Sensing, Simulation and Controls (1997)

    Google Scholar 

  14. Jung, S.K., Wohn, K.Y.: 3D Tracking and Motion Estimation using Hierarchical Kalman Filter. Proc. IEE Visual Image Signal Process. 144(5) (1997)

    Google Scholar 

  15. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Trans. of the ASME–J. of Basic Engineering 82-D, 35–45 (1960)

    Article  Google Scholar 

  16. Lewis, F.L.: Optimal Estimation. John Wiley and Sons, New York (1986)

    Google Scholar 

  17. Mikic, I., Santini, S., Jain, R.: Tracking Objects in 3D using Multiple Camera Views. In: Proc. Asian Conf. on Computer Vision, pp. 234–239 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canton-Ferrer, C., Casas, J.R., Tekalp, A.M., Pardàs, M. (2006). Projective Kalman Filter: Multiocular Tracking of 3D Locations Towards Scene Understanding. In: Renals, S., Bengio, S. (eds) Machine Learning for Multimodal Interaction. MLMI 2005. Lecture Notes in Computer Science, vol 3869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11677482_22

Download citation

  • DOI: https://doi.org/10.1007/11677482_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32549-9

  • Online ISBN: 978-3-540-32550-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics