Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Separating Constant from Polynomial Ambiguity of Finite Automata

(Extended Abstract)

  • Conference paper
SOFSEM 2006: Theory and Practice of Computer Science (SOFSEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3831))

  • 892 Accesses

Abstract

The degree of nondeterminism of a finite automaton can be measured by means of its ambiguity function. In many instances, whenever automata are allowed to be (substantially) less ambiguous, it is known that the number of states needed to recognize at least some languages increases exponentially. However, when comparing constantly ambiguous automata with polynomially ambiguous ones, the question whether there are languages such that the inferior class of automata requires exponentially many states more than the superior class to recognize them is still an open problem. The purpose of this paper is to suggest a family of languages that seems apt for a proof of this (conjectured) gap. As a byproduct, we derive a new variant of the proof of the existence of a superpolynomial gap between polynomial and fixed-constant ambiguity. Although our candidate languages are defined over a huge alphabet, we show how to overcome this drawback.

This work was supported by SNF grant 200021-107327/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata and Language Theory. Addison-Wesley, Reading (2000)

    Google Scholar 

  2. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  3. Hromkovi č, J., Karhumäki, J., Klauck, H., Seibert, S., Schnitger, G.: Measures on Nondeterminism in Finite Automata. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Kupke, J.: Limiting the Ambiguity of Non-Deterministic Finite Automata. Diploma Thesis, RWTH Aachen (2002), Available online at: http://www-i1.informatik.rwth-aachen.de/~joachimk/ltaondfa.ps

  5. Kupke, J.: On Separating Constant from Polynomial Ambiguity of Finite Automata, http://www.ite.ethz.ch/people/jkupke/publications/oscfpaofa.ps

  6. Gramlich, G., Schnitger, G.: Minimizing NFAs and Regular Expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Leung, H.: Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata. SIAM J. Comp. 27, 1073–1082 (1998)

    Article  MATH  Google Scholar 

  8. Moore, F.: On the Bounds for State-Set Size in the Proofs of Equivalence between Deterministic, Nondeterministic, and Two-Way Finite Automata. IEEE Trans. Comput. 20, 1211–1214 (1971)

    Article  MATH  Google Scholar 

  9. Ravikumar, B., Ibarra, O.: Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation. SIAM J. Comp. 18, 1263–1282 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sipser, M.: Lower Bounds on the Size of Sweeping Automata. J. Comp. and Sys. Sci. 21(2), 195–202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Weber, A., Seidl, H.: On the Ambiguity of Finite Automata. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 620–629. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kupke, J. (2006). On Separating Constant from Polynomial Ambiguity of Finite Automata. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_36

Download citation

  • DOI: https://doi.org/10.1007/11611257_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31198-0

  • Online ISBN: 978-3-540-32217-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics