Abstract
A chordal graph H is a triangulation of a graph G, if H is obtained by adding edges to G. If no proper subgraph of H is a triangulation of G, then H is a minimal triangulation of G. A potential maximal clique of G is a set of vertices that induces a maximal clique in a minimal triangulation of G. We will characterise the potential maximal cliques of permutation graphs and give a characterisation of minimal triangulations of permutation graphs in terms of sets of potential maximal cliques. This results in linear-time algorithms for computing treewidth and minimum fill-in for permutation graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)
Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and Pathwidth of Permutation Graphs. SIAM Journal on Discrete Mathematics 8(4), 606–616 (1995)
Bodlaender, H.L., Kloks, T., Kratsch, D., Müller, H.: Treewidth and minimum fill-in on d-trapezoid graphs. Journal of Graph Algorithms and Applications 2(3), 1–23 (1998)
Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics 6, 181–188 (1993)
Bouchitté, V., Todinca, I.: Treewidth and Minimum Fill-in: Grouping the Minimal Separators. SIAM Journal on Computing 31, 212–232 (2001)
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Journal of Mathematics 15, 835–855 (1965)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theoretical Computer Science 175, 309–335 (1997)
Lekkerkerker, C.G., Boland, J.C.: Representation of finite graphs by a set of intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)
Möhring, R.H.: Triangulating graphs without asteroidal triples. Discrete Applied Mathematics 64, 281–287 (1996)
Parra, A., Scheffler, P.: How to Use the Minimal Separators of a Graph for its Chordal Triangulation. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 123–134. Springer, Heidelberg (1995)
Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Applied Mathematics 79, 171–188 (1997)
Rose, D.J.: Triangulated Graphs and the Elimination Process. Journal of Mathematical Analysis and Applications 32, 597–609 (1970)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM Jounal on Computing 5, 266–283 (1976)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods 2, 77–79 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meister, D. (2005). Computing Treewidth and Minimum Fill-In for Permutation Graphs in Linear Time. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_9
Download citation
DOI: https://doi.org/10.1007/11604686_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31000-6
Online ISBN: 978-3-540-31468-4
eBook Packages: Computer ScienceComputer Science (R0)