Nothing Special   »   [go: up one dir, main page]

Skip to main content

Channel Assignment and Improper Choosability of Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3787))

Included in the following conference series:

Abstract

We model a problem proposed by Alcatel, a satellite building company, using improper colourings of graphs. The relation between improper colourings and maximum average degree is underlined, which contributes to generalise and improve previous known results about improper colourings of planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appel, K., Haken, W.: Every planar map is four colourable, Part I: Discharging. Illinois J. Math. 21, 429–490 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Appel, K., Haken, W., Koch, J.: Every planar map is four colourable, Part II: Reducibility. Illinois J. Math. 21, 491–567 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Eaton, N., Hull, T.: Defective list colorings of planar graphs. Bull. Inst. Combin. Appl. 25, 79–87 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Havet, F., Sereni, J.-S.: Improper choosability and maximum average degree. Internal Report INRIA RR-5164 (2004), ftp://ftp.inria.fr/INRIA/publication/publi-ps-gz/RR/RR-5164.ps.gz

  5. Lih, K.-W., Song, Z., Wang, W., Zhang, K.: A Note on List Improper Coloring Planar Graphs. Appl. Math. Let. 14, 269–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Škrekovski, R.: List improper colouring of planar graphs. Comb. Prob. Comp. 8, 293–299 (1999)

    Article  MATH  Google Scholar 

  7. Škrekovski, R.: List improper colorings of planar graphs with prescribed girth. Discrete Math. 214, 221–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Thomassen, C.: Every planar graph is 5-choosable. J. Comb. Theory B 62, 180–181 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Havet, F., Sereni, JS. (2005). Channel Assignment and Improper Choosability of Graphs. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_8

Download citation

  • DOI: https://doi.org/10.1007/11604686_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31000-6

  • Online ISBN: 978-3-540-31468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics