Nothing Special   »   [go: up one dir, main page]

Skip to main content

P Systems and the Modeling of Biochemical Oscillations

  • Conference paper
Membrane Computing (WMC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3850))

Included in the following conference series:

Abstract

In this paper we discuss the role that P systems have in the description of oscillatory biochemical processes once the membrane system evolution depends on the process parameters. This discussion focuses on a specific application example, meanwhile it includes a general definition of oscillation based on which we want to explore the meaning of oscillatory behaviors more deeply. The symbolic-based approach to biochemical processes such as that provided by P systems has recently resulted in insightful model descriptions. For this reason we expect it to turn useful in computational systems biology, whose models must deal with the twofold nature of the cell that is a continuous biochemical reactor ruled by discrete information contained in the DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 81–126. Springer, Berlin (2006)

    Google Scholar 

  2. Bianco, L., Fontana, F., Manca, V.: Metabolic algorithm with time-varying reaction maps. In: Proc. of the Third Brainstorming Week on Membrane Computing, Sevilla, Spain, pp. 43–62 (2005)

    Google Scholar 

  3. Bianco, L., Fontana, F., Manca, V.: Reaction-driven membrane systems. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1155–1158. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  5. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–244 (2002)

    Article  Google Scholar 

  6. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, New York (2004)

    Google Scholar 

  7. Gonze, D., Halloy, J., Goldbeter, A.: Stochastic model for circadian oscillations: Emergence of a biological rhythm. Int. J. of Quantum Chemistry 98, 228–238 (2004)

    Article  Google Scholar 

  8. Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (2000)

    Book  MATH  Google Scholar 

  9. Jones, D.S., Sleeman, B.D.: Differential Equations and Mathematical Biology. Chapman & Hall/CRC, London (2003)

    MATH  Google Scholar 

  10. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  11. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  12. Leloup, J.C., Goldbeter, A.: A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. of Biological Rhythms 13, 70–87 (1998)

    Article  Google Scholar 

  13. Lindenmayer, A.: Mathematical models for cellular interaction in development. J. of Theoretical Biology 18, 280–315, Part I and II (1968)

    Google Scholar 

  14. Manca, V., Bianco, L., Fontana, F.: Evolutions and oscillations of P systems: Applications to biological phenomena. In: [16], pp. 63–84

    Google Scholar 

  15. Manca, V., Franco, G., Scollo, G.: State transition dynamics: Basic concepts and molecular computing perspectives. In: Gheorghe, M. (ed.) Molecular Computational Models - Unconventional Approaches. Idea Group, USA (2004)

    Google Scholar 

  16. Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365. Springer, Heidelberg (2005)

    Google Scholar 

  17. Păun, G.: Computing with membranes. J. Comput. System Sci. 61, 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling EGFR signalling network using continuous membrane systems. In: Plotkin, G. (ed.) Proceedings of the Third International Workshop on Computational Methods in Systems Biology 2005 (CMSB 2005), University of Edinburgh, UK (2005)

    Google Scholar 

  20. Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: Visual models of plant development. In: [21], Beyond Words, vol. III, pp. 535–597

    Google Scholar 

  21. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)

    MATH  Google Scholar 

  22. Stamatopoulou, I., Gheorghe, M., Kefalas, P.: Modelling dynamic organization of biology-inspired multi-agent systems with communicating X-machines and population P systems. In: [16], pp. 389–403

    Google Scholar 

  23. Suzuki, Y., Tanaka, H.: Chemical oscillation in symbolic chemical systems and its behavioral pattern. In: Bar-Yam, Y. (ed.) Proc. International Conference on Complex Systems, Nashua, NH (1997)

    Google Scholar 

  24. Vincent, T.L., Grantham, W.J.: Nonlinear and Optimal Control Systems. Wiley, New York (1997)

    Google Scholar 

  25. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

  26. Zeng, H.: Constitutive overexpression of the drosophila period protein inhibits period mRNA cycling. The EMBO Journal 13, 3590–3598 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontana, F., Bianco, L., Manca, V. (2006). P Systems and the Modeling of Biochemical Oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2005. Lecture Notes in Computer Science, vol 3850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11603047_14

Download citation

  • DOI: https://doi.org/10.1007/11603047_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30948-2

  • Online ISBN: 978-3-540-32340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics