Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algorithms for Range-Aggregate Query Problems Involving Geometric Aggregation Operations

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We consider variations of the standard orthogonal range searching motivated by applications in database querying and VLSI layout processing. In a generic instance of such a problem, called a range-aggregate query problem we wish to preprocess a set S of geometric objects such that given a query orthogonal range q, a certain intersection or proximity query on the objects of S intersected by q can be answered efficiently. Efficient solutions are provided for point enclosure queries, 1-d interval intersection, 2-d orthogonal segment intersection and 1- and 2-d closest pair problems in this framework. Although range-aggregate queries have been widely investigated in the past for aggregation functions like average, count, min, max, sum etc. we consider geometric aggregation operations in this paper.

This research is supported in part by grants SR/S3/EECE/22/2004 and DST/INT/US/NSF-RPO-0155/04 from the Department of Science and Technology, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 23, pp. 1–56. American Mathematical Society Press, Providence (1999)

    Google Scholar 

  2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  3. Balaban, I.J.: An optimal algorithm for finding segment intersections. In: Proceedings, 11th Annual ACM Symposium on Computational Geometry, pp. 211–219 (1995)

    Google Scholar 

  4. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings, ACM Symposium on Theory of Computing, pp. 135–142 (1984)

    Google Scholar 

  5. Govindarajan, S., Agarwal, P.K., Arge, L.: CRB-Tree: An efficient indexing scheme for Range Aggregate Queries. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 143–157. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Recichart, D., VenkatRao, M., Pellow, F., Pirahesh, H.: Data Cube: A relational aggregation operator generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)

    Article  Google Scholar 

  7. Hong, S., Song, B., Lee, S.: Efficient execution of range-aggregate queries in data warehouse environments. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 299–310. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Jampani, R., Thonangi, R., Gupta, P.: Overlaying multiple maps efficiently. In: Das, G., Gulati, V.P. (eds.) CIT 2004. LNCS, vol. 3356, pp. 263–272. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Mead, C.A., Conway, L.A.: Introduction to VLSI Systems. Addison Wesley, USA (1980)

    Google Scholar 

  10. McCreight, E.M.: Priority search trees. SIAM Journal of Computing 14(2), 257–276 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shan, J., Zhang, D., Salzberg, B.: On spatial-range closest-pair query. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 252–269. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  13. Sherwani, N.: Algorithms for VLSI Physical Design Automation. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  14. Smid, M.: Closest point problems in computational geometry. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  15. Szymanski, T.G., van Wyk, C.J.: Layout analysis and verification. In: Preas, B., Lorenzetti, M. (eds.) Physical Design Automation of VLSI Systems, pp. 347–407. Benjamin/Cummins (1988)

    Google Scholar 

  16. Tao, Y., Papadias, D.: Range aggregate processing in spatial databases. IEEE Transactions on Knowledge and Data Engineering 16(12), 1555–1570 (2004)

    Article  Google Scholar 

  17. Zhang, D., Tsotras, V.J.: Improving min/max aggregation over spatial objects. VLDB Journal 14(2), 170–181 (2005)

    Article  Google Scholar 

  18. Zhang, D., Markowetz, A., Tsotras, V., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range restrictions. In: Proceedings, Symposium on Principles of Database Systems (2001)

    Google Scholar 

  19. Zhang, D., Tsotras, V.J., Gunopulos, D.: Efficient aggregation over objects with extent. In: Proceedings, Symposium on Principles of Database Systems, pp. 121–132 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, P. (2005). Algorithms for Range-Aggregate Query Problems Involving Geometric Aggregation Operations. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_89

Download citation

  • DOI: https://doi.org/10.1007/11602613_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics