Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sampling Unlabeled Biconnected Planar Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We present an expected polynomial time algorithm to generate a 2-connected unlabeled planar graph uniformly at random. To do this we first derive recurrence formulas to count the exact number of rooted 2-connected planar graphs, based on a decomposition along the connectivity structure. For 3-connected planar graphs we use the fact that they have a unique embedding on the sphere. Special care has to be taken for rooted graphs that have a sense-reversing or a pole-exchanging automorphism. We prove a bijection between such symmetric objects and certain colored networks. These colored networks can again be decomposed along their connectivity structure. All the numbers can be evaluated in polynomial time by dynamic programming. To generate 2-connected unlabeled planar graphs without a root uniformly at random we apply rejection sampling and obtain an expected polynomial time algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures and Algorithms 19, 194–246 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bender, A., Gao, Z., Wormald, N.: The number of labeled 2-connected planar graphs. Electronic Journal of Combinatorics 9(43) (2002)

    Google Scholar 

  3. Bender, E.A., Wormald, N.: Almost all convex polyhedra are asymmetric. Can. J. Math. 27(5), 854–871 (1985)

    Article  MathSciNet  Google Scholar 

  4. Bodirsky, M., Giménez, O., Kang, M., Noy, M.: On the number of series-parallel and outerplanar graphs. In: The Proceedings of European Conference on Combinatorics, Graph Theory, and Applications (EuroComb 2005). DMTCS Proceedings Series Volume AE, pp. 383–388 (2005)

    Google Scholar 

  5. Bodirsky, M., Gröpl, C., Johannsen, D., Kang, M.: A direct decomposition of 3-connected planar graphs. In: Proceedings of the 17th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2005), Taormina (2005)

    Google Scholar 

  6. Bodirsky, M., Gröpl, C., Kang, M.: Sampling unlabeled biconnected planar graphs, Full version, available at http://www.informatik.hu-berlin.de/Forschung_Lehre/algorithmen/en/forschung/planar/

  7. Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly at random. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1095–1107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Bodirsky, M., Kang, M.: Generating outerplanar graphs uniformly at random. Accepted for publication in Combinatorics, Probability and Computing. Presented at the 1st workshop on Algorithms for Listing, Counting, and Enumeration, ALICE 2003 (2003)

    Google Scholar 

  9. Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. In: 20th Annual Symposium on Theoretical Aspects of Computer Science, STACS (2003)

    Google Scholar 

  10. Denise, A., Vasconcellos, M., Welsh, D.: The random planar graph. Congressus Numerantium 113, 61–79 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Denise, A., Zimmermann, P.: Uniform random generation of decomposable structures using floating-point arithmetic. Theoretical Computer Science 218, 233–248 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diestel, R.: Graph Theory. Springer, New York (1997)

    MATH  Google Scholar 

  13. Eric Fusy, D.P., Schaeffer, G.: Dissections and trees: applications to optimal mesh encoding and random sampling. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA 2005), pp. 690–699 (2005)

    Google Scholar 

  14. Flajolet, P., Zimmerman, P., Van Cutsem, B.: A calculus for the random generation of labelled combinatorial structures. Theoretical Computer Science 132(1-2), 1–35 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gerke, S., McDiarmid, C.: On the number of edges in random planar graphs. Comb. Prob. and Computing 13, 358–402 (2004)

    MathSciNet  Google Scholar 

  16. Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs (preprint)

    Google Scholar 

  17. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs. In: Annual ACM Symposium on Theory of Computing, pp. 172–184 (1974)

    Google Scholar 

  18. McDiarmid, C., Steger, A., Welsh, D.: Random planar graphs. Journal of Combinatorial Theory, Series B 93, 187–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nijenhuis, A., Wilf, H.: Combinatorial algorithms. Academic Press Inc., London (1979)

    Google Scholar 

  20. Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. J. Combinatorial Theory, Series B, 119–143 (2003)

    Google Scholar 

  21. Schaeffer, G.: Random sampling of large planar maps and convex polyhedra. In: Proc. of the Thirty-first Annual ACM Symposium on the Theory of Computing (STOC 1999), Atlanta, Georgia, May 1999, pp. 760–769 (1999)

    Google Scholar 

  22. Steinitz, E.: Polyeder und Raumeinteilungen. Encyclopädie der mathematischen Wissenschaften Band III(9) (1922)

    Google Scholar 

  23. Trakhtenbrot, B.A.: Towards a theory of non-repeating contact schemes. Trudi Mat. Inst. Akad. Nauk SSSR 51, 226–269 (1958) (in Russian)

    Google Scholar 

  24. Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  25. Walsh, T.: Counting labelled three-connected and homeomorphically irreducible two-connected graphs. J. Combin. Theory 32, 1–11 (1982)

    MATH  Google Scholar 

  26. Walsh, T., Liskovets, V.A.: Ten steps to counting planar graphs. In: 18th Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer., vol. 60, pp. 269–277 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodirsky, M., Gröpl, C., Kang, M. (2005). Sampling Unlabeled Biconnected Planar Graphs. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_60

Download citation

  • DOI: https://doi.org/10.1007/11602613_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics