Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Practical Algorithm for the Computation of Market Equilibrium with Logarithmic Utility Functions

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

  • 1326 Accesses

Abstract

We develop an algorithm for computing the equilibrium price in the Fisher’s exchange market model with logarithmic utility functions. The algorithm is proved to converge to the equilibrium price in finite time and performs better than existing polynomial-time algorithms in experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price equilibria. Journal of Computer and System Sciences 67, 311–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Nenakhov, E., Primak, M.: About one algorithm for finding the solution of the Arrow-Debreu model. Kibernetica, 127–128 (1983)

    Google Scholar 

  4. Jain, K.: A polynomial time algorithm for computing the Arrow-Debreu market equilibrium for linear utilities. In: Proceeding of FOCS 2004, pp. 286–294 (2004)

    Google Scholar 

  5. Ye, Y.: A path to the Arrow-Debreu competitive market equilibrium. To appear in Math. Programming (2004)

    Google Scholar 

  6. Devanur, N.R., Vazirani, V.V.: The spending constraint model for market equilibrium: algorithmic, existence and uniqueness results. In: Proceedings of STOC 2004, pp. 519–528 (2004)

    Google Scholar 

  7. Codenotti, B., Pemmaraju, S., Varadarajan, K.: On the polynomial time computation of equilibria for certain exchange economies. In: Proceedings of SODA 2005, pp. 72–81 (2005)

    Google Scholar 

  8. Codenotti, B., Pemmaraju, S., Varadarajan, K.: Algorithms column, the computation of market equilibria. ACM SIGACT News 35 (2004)

    Google Scholar 

  9. Chen, N., Deng, X., Sun, X., Yao, A.C.: Fisher equilibrium price with a class of concave utility functions. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 169–179. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Deng, X., Huang, L.S., Ye, Y.: Computation of the Arrow-Debreu equilibrium for a class of non-homogenous utility functions (manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, LS. (2005). A Practical Algorithm for the Computation of Market Equilibrium with Logarithmic Utility Functions. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_47

Download citation

  • DOI: https://doi.org/10.1007/11602613_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics