Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nash Equilibria in All-Optical Networks

(Extended Abstract)

  • Conference paper
Internet and Network Economics (WINE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3828))

Included in the following conference series:

Abstract

We consider the problem of routing a number of communication requests in WDM (wavelength division multiplexing) all-optical networks from the standpoint of game theory. If we view each routing request (pair of source-target nodes) as a player, then a strategy consists of a path from the source to the target and a frequency (color). To reflect the restriction that two requests must not use the same frequency on the same edge, conflicting strategies are assigned a prohibitively high cost.

Under this formulation, we consider several natural cost functions focusing on the existence of Nash equilibria and on the complexity of recognizing and computing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. of Mathematical Economics 1, 67–96 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Awerbach, B., Azar, Y., Fiat, A., Leonardi, S., Rosen, A.: On-line competitive algorithms for call admission in optical networks. Algorithmica 31(1), 29–43 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bartal, Y., Leonardi, S., Rosen, A.: On-line Routing in optical networks. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 516–526. Springer, Heidelberg (1997)

    Google Scholar 

  4. Bilo, V., Flammini, M., Moscardelli, L.: On Nash Equilibria in Non-cooperative All-Optical Networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 448–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bilo, V., Moscardelli, L.: The Price of Anarchy in All-Optical Networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 13–22. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Erlebach, T., Jansen, K.: The complexity of path coloring and call scheduling. Theoretical Computer Science 255(1-2), 33–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Even, S., Itai, A., Shamir, A.: On the complexity of time-table and multicommodity flow problems. SIAM journal of Computing 5, 691–703 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fabrikant, A., Papadimitriou, C., Tulwar, K.: The Complexity of pure Nash equilibria. In: STOC 2004, pp. 604–612 (2004)

    Google Scholar 

  10. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronikolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Li, G., Simha, R.: On the wavelength assignment problem in multifiber WDM star and ring networks. In: Proceedings of INFOCOM, pp. 1771–1780 (2000)

    Google Scholar 

  13. Nash, J.F.: Equilibrium points in n-person games. Proc. of National Academy of Sciences 36, 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nomikos, C.: Path coloring in graphs. Phd dissertation. Dept. of Electrical and Computer Engineering, NTUA (1997)

    Google Scholar 

  15. Nomikos, C., Pagourtzis, A., Zachos, S.: Minimizing request blocking in all-optical rings. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM 2003), San Francisco, CA, USA, March 30 - April 3 (2003)

    Google Scholar 

  16. Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Fiber Cost Reduction and Wavelength Minimization in Multifiber WDM Networks. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 150–161. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37, 21–25 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Panagopoulou, P.N., Spirakis, P.G.: Efficient convergence to pure Nash equilibria in weighted network congestion games. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 203–215. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Papadimitriou, C.: Computing correlated equilibria in multi-player games. In: ACM Symposium on Theory of Computing archive Proceedings of the 37th ACM symp. on Theory of computing, 2005, Baltimore, MD, USA, pp. 49–56 (2005)

    Google Scholar 

  20. Papadimitriou, C.H., Roughgarden, T.: Computing Equilibria in Multi-Player Games. In: SODA 2005, pp. 82–91 (2005)

    Google Scholar 

  21. Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: Proc. of STOC, pp. 134–143 (1994)

    Google Scholar 

  22. Sharma, S., Varvarigos, E.: Limited wavelength translation in all-optical WDM mesh networks. In: Proceedings of INFOCOM, pp. 893–901 (1998)

    Google Scholar 

  23. Vempala, S., Voking, B.: Approximating multicast congestion. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 367–372. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Voorneveld, M., Borm, P., van Megen, F., Tijs, S., Facchini, G.: Congestion games and potentials reconsidered. International Game Theory Review 1, 283–299 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgakopoulos, G.F., Kavvadias, D.J., Sioutis, L.G. (2005). Nash Equilibria in All-Optical Networks. In: Deng, X., Ye, Y. (eds) Internet and Network Economics. WINE 2005. Lecture Notes in Computer Science, vol 3828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11600930_104

Download citation

  • DOI: https://doi.org/10.1007/11600930_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30900-0

  • Online ISBN: 978-3-540-32293-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics