Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks

  • Conference paper
Progress in Cryptology - INDOCRYPT 2005 (INDOCRYPT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3797))

Included in the following conference series:

Abstract

Prouff has introduced recently, at FSE 2005, the notion of transparency order of S-boxes. This new characteristic is related to the ability of an S-box, used in a cryptosystem in which the round keys are introduced by addition, to thwart single-bit or multi-bit DPA attacks on the system. If this parameter has sufficiently small value, then the S-box is able to withstand DPA attacks without that ad-hoc modifications in the implementation be necessary (these modifications make the encryption about twice slower). We prove a lower bound on the transparency order of highly nonlinear S-boxes. We show that some highly nonlinear functions, and in particular the S-box of AES, have very bad transparency orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials. In: Proceedings of the Workshop on Coding and Cryptography 2005, Bergen, pp. 306–315 (2005)

    Google Scholar 

  3. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: A proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1), 4–8 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Canteaut, A., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly nonlinear functions on GF(2m) and crosscorrelation of maximum-length sequences. SIAM Journal on Discrete Mathematics 13(1), 105–138 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract power analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

    Google Scholar 

  8. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differential Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Welch case. IEEE Trans. Inform. Theory 45, 1271–1275 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): a new case for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) Proceedings of Finite Fields and Applications FQ5, Augsburg, Germany, pp. 113–121. Springer, Heidelberg (2000)

    Google Scholar 

  12. Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Niho case. Inform. and Comput. 151, 57–72 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goubin, L., Patarin, J.: DES and differential power analysis - the duplication method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Guilley, S., Hoogvorst, P., Pascalet, R.: Differential power analysis model and some results. In: Smart Card Research ann Advanced Applications VI - Cardis 2004, pp. 127–142. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  16. Hasan, A.A.: Power analysis attacks and algorithmic approaches to their countermeasures for koblitz curve cryptosystems. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 93–108. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. In: Finite Fields and Their Applications 7, pp. 253–286 (2001)

    Google Scholar 

  18. Janwa, H., Wilson, R.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 180–194. Springer, Heidelberg (1993)

    Google Scholar 

  19. Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control 18, 369–394 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  21. Lachaud, G., Wolfmann, J.: The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  23. Sommer, R.M.: Smartly analysing the simplicity and the power of simple power analysis on smartcards. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 78–92. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Messerges, T., Dabbish, E., Sloan, R.: Power analysis attacks of modular exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  26. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  27. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative Masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carlet, C. (2005). On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_5

Download citation

  • DOI: https://doi.org/10.1007/11596219_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30805-8

  • Online ISBN: 978-3-540-32278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics