Abstract
Prouff has introduced recently, at FSE 2005, the notion of transparency order of S-boxes. This new characteristic is related to the ability of an S-box, used in a cryptosystem in which the round keys are introduced by addition, to thwart single-bit or multi-bit DPA attacks on the system. If this parameter has sufficiently small value, then the S-box is able to withstand DPA attacks without that ad-hoc modifications in the implementation be necessary (these modifications make the encryption about twice slower). We prove a lower bound on the transparency order of highly nonlinear S-boxes. We show that some highly nonlinear functions, and in particular the S-box of AES, have very bad transparency orders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)
Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost Perfect Nonlinear Polynomials. In: Proceedings of the Workshop on Coding and Cryptography 2005, Bergen, pp. 306–315 (2005)
Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: A proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1), 4–8 (2000)
Canteaut, A., Charpin, P., Dobbertin, H.: Weight divisibility of cyclic codes, highly nonlinear functions on GF(2m) and crosscorrelation of maximum-length sequences. SIAM Journal on Discrete Mathematics 13(1), 105–138 (2000)
Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–156 (1998)
Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995)
Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract power analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)
Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)
Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differential Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)
Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Welch case. IEEE Trans. Inform. Theory 45, 1271–1275 (1999)
Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): a new case for n divisible by 5. In: Jungnickel, D., Niederreiter, H. (eds.) Proceedings of Finite Fields and Applications FQ5, Augsburg, Germany, pp. 113–121. Springer, Heidelberg (2000)
Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003)
Dobbertin, H.: Almost perfect nonlinear power functions over GF(2n): the Niho case. Inform. and Comput. 151, 57–72 (1999)
Goubin, L., Patarin, J.: DES and differential power analysis - the duplication method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)
Guilley, S., Hoogvorst, P., Pascalet, R.: Differential power analysis model and some results. In: Smart Card Research ann Advanced Applications VI - Cardis 2004, pp. 127–142. Kluwer Academic Publishers, Dordrecht (2004)
Hasan, A.A.: Power analysis attacks and algorithmic approaches to their countermeasures for koblitz curve cryptosystems. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 93–108. Springer, Heidelberg (2000)
Hollmann, H., Xiang, Q.: A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences. In: Finite Fields and Their Applications 7, pp. 253–286 (2001)
Janwa, H., Wilson, R.: Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 180–194. Springer, Heidelberg (1993)
Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control 18, 369–394 (1971)
Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Lachaud, G., Wolfmann, J.: The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Sommer, R.M.: Smartly analysing the simplicity and the power of simple power analysis on smartcards. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 78–92. Springer, Heidelberg (2000)
Messerges, T., Dabbish, E., Sloan, R.: Power analysis attacks of modular exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)
Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg (1993)
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)
Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)
Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative Masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carlet, C. (2005). On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds) Progress in Cryptology - INDOCRYPT 2005. INDOCRYPT 2005. Lecture Notes in Computer Science, vol 3797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596219_5
Download citation
DOI: https://doi.org/10.1007/11596219_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30805-8
Online ISBN: 978-3-540-32278-8
eBook Packages: Computer ScienceComputer Science (R0)