Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Support Vector Machine for Multi-class Classification

  • Conference paper
Computational Intelligence and Security (CIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3801))

Included in the following conference series:

Abstract

Support Vector Machines (SVMs) for classification – in short SVM – have been shown to be promising classification tools in many real-world problems. How to effectively extend binary SVC to multi-class classification is still an on-going research issue. In this article, instead of solving quadratic programming (QP) in Algorithm K-SVCR and Algorithm ν-K-SVCR, a linear programming (LP) problem is introduced in our algorithm. This leads to a new algorithm for multi-class problem, K-class Linear programming ν–Support Vector Classification-Regression(Algorithm ν-K-LSVCR). Numerical experiments on artificial data sets and benchmark data sets show that the proposed method is comparable to Algorithm K-SVCR and Algorithm ν-K-SVCR in errors, while considerably faster than them.

This work is supported by the National Natural Science Foundation of China (No.10371131).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Jackel, L.D., LeCun, Y., Müller, U.A., Sackinger, E., Simard, P., Vapnik, V.: Comparison of classifier methods: a case study in handwriting digit recognition. In: IAPR (ed.) Proceedings of the International Conference on Pattern Recognition, pp. 77–82. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  2. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  3. Hastie, T.J., Tibshirani, R.J.: Classification by pairwise coupling. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 507–513. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Krebel, U.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  5. Angulo, C., Parr, X., Català, A.: K-SVCR. A support vector machine for multi-class classification. Neurocomputing 55, 57–77 (2003)

    Article  Google Scholar 

  6. Zhong, P., Fukushima, M.: A new multi-class support vector algorithm. Optimization Methods and Software (2004) (to appear)

    Google Scholar 

  7. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Solving multi-class learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  9. Graepel, T., Herbrich, R., Schoelkopf, B., et al.: Classification on Proximity Data with LP–Machines ICANN (1999)

    Google Scholar 

  10. Smola, A., Scholkopf, B., Rutsch, G.: Linear programs for automatic accuracy control in regression. In: Ninth International Conference on Artificial Neural Networks. Conference Publications London, vol. 470, pp. 575–580 (1999)

    Google Scholar 

  11. Bennett, K.P.: Combining support vector and mathematical programming methods for classification. In: Schälkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, pp. 307–326. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-basd vector machines. Journal of Machine Learning Research 2, 265–292 (2002)

    Article  MATH  Google Scholar 

  13. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines. Computing Science and Statistics 33, 498–512 (2001)

    Google Scholar 

  14. Weston, J., Watkins, C.: Multi-class support vector machines. CSD-TR-98-04 Royal Holloway, University of London, Egham, UK (1998)

    Google Scholar 

  15. Graepel, T., et al.: Classification on proximity data with LP-machines. In: Ninth International Conference on Artifical Neural Networks IEEE, vol. 470, pp. 304–309. Conference Publications, London (1999)

    Chapter  Google Scholar 

  16. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, Z., Tian, Y., Deng, N. (2005). A New Support Vector Machine for Multi-class Classification. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_85

Download citation

  • DOI: https://doi.org/10.1007/11596448_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30818-8

  • Online ISBN: 978-3-540-31599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics