Abstract
Computational intelligence has figured prominently in many solutions to the network intrusion detection problem since the 1990s. This prominence and popularity has continued in the contributions of the recent past. These contributions present the success and potential of computational intelligence in network intrusion detection systems for tasks such as feature selection, signature generation, anomaly detection, classification, and clustering. This paper reviews these contributions categorized in the sub-areas of soft computing, machine learning, artificial immune systems, and agent-based systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hofmann, A., Horeis, T., Sick, B.: Feature Selection for Intrusion Detection: An Evolutionary Wrapper Approach. In: Proc., International Joint Conference on Neural Networks (IJCNN 2004), pp. 1563–1568 (2004)
Siraj, A., Vaughn, R.B., Bridges, S.M.: Intrusion Sensor Data Fusion in an Intelligent Intrusion Detection System Architecture. In: Proc. Hawaii International Conference on System Sciences, pp. 902–911 (2004)
Valdes, A.: Detecting Novel Scans Through Pattern Anomaly Detection. In: Proc. DARPA Information Survivability Conference and Exhibition (DICEX 2003), pp. 140–151 (2003)
Sung, A.H., Mukkamala, S.: Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. In: Proc. Symposium on Applications and the Internet (SAINT 2003), pp. 209–216 (2003)
Dasgupta, D., Gonzalez, F.: An Immunity-based Technique to Characterize Intrusions in Computer Networks. IEEE Transactions on Evolutionary Computing 6(3), 281–291 (2002)
Dasgupta, D., Brian, H.: Mobile Security Agents for Network Traffic Analysis. In: Proc. DARPA Information Survivability Conference and Exhibition, pp. 332–340 (2001)
Song, D., Haywood, M.I., Zincir-Heywood, A.N.: Training Genetic Programming on Half a Million Patterns: An Example from Anomaly Detection. IEEE Transactions on Evolutionary Computation 9(3), 225–239 (2005)
Esponda, F., Forrest, S., Helman, P.: A Formal Framework for Positive and Negative Decision Schemes. IEEE Transactions on Systems, Man, and Cybernetics – Part B (Cybernetics) 34(1), 357–373 (2004)
Gonzalez, F., Gomez, J., Kaniganti, M., Dasgupta, D.: An Evolutionary Approach to Generate Anomaly (Attack) Signatures. In: Proc. IEEE International Workshop on Information Assurance (IWIA 2003), pp. 251–259 (2003)
Seredynski, F.: Some Issues in Solving the Anomaly Detection Problem Using the Immunological Approach. In: Proc. IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005), pp. 188–195 (2005)
Florez, G., Bridges, S.M., Vaughn, R.B.: An Improved Algorithm for Fuzzy Data Mining for Intrusion Detection. Proc. North American Fuzzy Processing Society, 457–462 (2002)
Adeli, H., Karim, A.: Wavelets in Intelligent Transportation Systems. John Wiley & Sons, UK (2005)
Shah, H., Undercoffer, J., Joshi, A.: Fuzzy Clustering for Intrusion Detection. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1274–1278 (2003)
Gomez, J., Gonzalez, F., Dasgupta, D.: An Immuno-Fuzzy Approach to Intrusion Detection. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1219–1224 (2003)
Kim, J., Bentley, P.J.: Towards an Artificial Immune System for Network Intrusion Detection: An Investigation of Clonal Selection with a Negative Selection Operator. Proc. Congress on Evolutionary Computing, 1244–1252 (2001)
Li, J., Manikopoulos, C.: Early Statistical Anomaly Intrusion Detection of DoS Attacks Using MIB Traffic Parameters. In: Proc. IEEE International Workshop on Information Assurance (IWIA 2003), pp. 53–59 (2003)
Xin, J., Dickerson, J.E., Dickerson, J.A.: Fuzzy Feature Extraction and Visualization for Intrusion Detection. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1249–1254 (2003)
Shapiro, J.M., Lamont, G.B., Peterson, G.L.: An Evolutionary Algorithm to Generate Hyper-Ellipsoid Detectors for Negative Selection. In: Proc. GECCO 2005, pp. 337–344 (2005)
Lee, K., Mikhailov, L.: Intelligent Intrusion Detection System. In: Proc. IEEE International Conference on Intelligent Systems, pp. 497–502 (2004)
Anchor, K.P., Williams, P.D., Gunsch, G.H., Lamont, G.B.: The Computer Defense Immune System: Current and Future Research in Intrusion Detection. Proc. Congress on Evolutionary Computing, 1027–1032 (2002)
Zhou, L., Liu, F., Wu, J.: Research on Co-operative Computer Network Security Technologies. In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, pp. 1164–1168 (2004)
Middlemiss, M.J., Dick, G.: Weighted Feature Extraction Using a Genetic Algorithm for Intrusion Detection. Proc. Congress on Evolutionary Computing, 1669–1675 (2003)
Pillai, M.M., Eloff, J.H.P., Venter, H.S.: An Approach to Implement an Intrusion Detection System Using Genetic Algorithms. In: Proc. SAICSIT 2004, pp. 228–235 (2004)
Mahoney, M.V., Chan, P.K.: Learning Rules for Anomaly Detection of Hostile Network Traffic. In: Proc. IEEE International Conference on Data Mining (ICDM 2003), pp. 601–604 (2003)
Ye, N., Zhang, Y., Borror, C.M.: Robustness of the Markov Chain Model for Cyber-Attack Detection. IEEE Transactions on Reliability 53(1), 116–123 (2004)
Amor, N.B., Benferhat, S., Elouedi, Z.: Naïve Bayes vs Decision Trees in Intrusion Detectin Systems. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 420–424. Springer, Heidelberg (2004)
Miller, P., Inoue, A.: Collaborative Intrusion Detection System. Proc. North American Fuzzy Information Processing Society, 519–524 (2003)
Diaz-Gomez, P.A., Hougen, D.F.: Analysis and Mathematical Justification of a Fitness Function Used in an Intrusion Detection System. In: Proc. GECCO 2005, pp. 1591–1592 (2005)
Xue, Q., Guo, L., Sun, J.: The Design of a Distributed Network Intrusion Detection System IA-NIDS. In: Proc. International Conference on Machine Learning and Cybernetics, pp. 2305–2308 (2003)
Kemmerer, R.A., Vigna, G.: Intrusion Detection: A Brief History and Overview. IEEE Computer, 27–30 (2002)
Gong, R.H., Zulkernine, M., Abolmaesumi, P.: A Software Implementation of a Genetic Algorithm Based Approach to Network Intrusion Detection. In: Proc. International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing, pp. 246–253 (2005)
Chavan, S., Shah, K., Dave, N., Mukherjee, S.: Adaptive Neuro-Fuzzy Intrusion Detection Systems. In: Proc. International Conference on Information Technology: Coding and Computing (ITCC 2004), pp. 70–74 (2004)
Cho, S.: Incorporating Soft Computing Techniques into a Probabilistic Intrusion Detection System. IEEE Transactions on Systems, Man, and Cybernetics – Part C (Applications and Reviews) 32(2), 154–160 (2002)
Makkamala, S., Sung, A.H.: Detecting Denial of Service Attacks Using Support Vector Machines. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 1231–1236 (2003)
Sarasamma, S.T., Zhu, Q.A., Huff, J.: Hierarchical Kohonen Net for Anomaly Detection in Network Security. IEEE Transactions on Systems, Man, and Cybernetics – Part B (Cybernetics) 35(2), 302–312 (2005)
Abbes, T., Bouhoula, A.A., Rusinowitch, M.: Protocol Analysis in Intrusion Detection using Decision Tree. In: Proc. International Conference on Information Technology, Coding, and Computing (ITCC 2004), pp. 404–408 (2004)
Ng, W., Chang, R., Yeung, D.: Dimensionality Reduction for Denial of Service Detection Problems Using RBFNN Output Sensitivity. In: Proc. International Conference on Machine Learning and Cybernetics, pp. 1293–1298 (2003)
Hang, X., Dai, H.: Applying Both Positive and Negative Selection to Supervised Learning for Anomaly Detection. In: Proc. GECCO 2005, pp. 345–352 (2005)
Zhang, X., Zhu, Z.: Combining the HMM and the Neural Network Models to Recognize Intrusions. In: Proc. International Conference on Machine Learning and Cybernetics, pp. 956–961 (2004)
Liu, Y., Tian, D., Wang, A.: ANNIDS: Intrusion Detection System Based on Artificial Neural Network. In: Proc. International Conference on Machine Learning and Cybernetics, pp. 1337–1342 (2003)
Xiaoping, Y., Yu, D.: An Auto-Configuration Cooperative Distributed Intrusion Detection System. Proc. World Congress on Intelligent Control and Automation, 279–283 (2004)
Anming, Z., Chunfu, J.: Study on the Applications of Hidden Markov Models to Computer Intrusion Detection. Proc. World Congress on Intelligent Control and Automation, 256–260 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karim, A. (2005). Computational Intelligence for Network Intrusion Detection: Recent Contributions. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_25
Download citation
DOI: https://doi.org/10.1007/11596448_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30818-8
Online ISBN: 978-3-540-31599-5
eBook Packages: Computer ScienceComputer Science (R0)