Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Multimodal MR Data for Segmentation and Topology Recovery of the Cerebral Superficial Venous Tree

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3804))

Included in the following conference series:

  • 1799 Accesses

Abstract

Magnetic resonance angiography (MRA) produces 3D data visualizing vascular structures by detecting the flowing blood signal. While segmentation methods generally detect vessels by only processing MRA, the proposed method uses both MRA and non-angiographic (MRI) images. It is based on the assumption that MRI provides anatomical information useful for vessel detection. This supplementary information can be used to correct the topology of the segmented vessels. Vessels are first segmented from MRA while the cortex is segmented from MRI. An algorithm, based on distance maps and topology preserving thinning, then uses both segmented structures for recovery of the missing parts of the brain superficial venous tree and removal of other vessels. This method has been performed and validated on 9 MRA/MRI data of the brain. The results show that the venous tree is correctly segmented and topologically recovered with a 84% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36, 81–121 (2004)

    Article  Google Scholar 

  2. Sanderson, A., Parker, D., Henderson, T.: Simultaneous segmentation of MR and X-ray angiograms for visualization of cerebral vascular anatomy. In: International Conference on Volume Image Processing - VIP 1993, pp. 11–14 (1993)

    Google Scholar 

  3. Bloch, I., Pellot, C., Sureda, F., Herment, A.: 3D reconstruction of blood vessels by multi-modality data fusion using fuzzy and Markovian modelling. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 392–398. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Foucher, J.: Using watershed and multimodal data for vessel segmentation: Application to the superior sagittal sinus. In: International Symposium on Mathematical Morphology - ISMM 2005, pp. 419–428 (2005)

    Google Scholar 

  5. Dokládal, P., Lohou, C., Perroton, L., Bertrand, G.: Liver blood vessels extraction by a 3-D topological approach. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 98–105. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Flasque, N., Desvignes, M., Constans, J., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis 5, 173–183 (2001)

    Article  Google Scholar 

  7. Zahlten, C., Jürgens, H., Peitgen, H.O.: Reconstruction of branching blood vessels from CT-data. In: Visualization in Scientific Computing 1995, Eurographics Workshop, pp. 41–52 (1995)

    Google Scholar 

  8. Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Maillot, C., Jahn, C.: Region-growing segmentation of brain vessels: An atlas-based automatic approach. Journal of Magnetic Resonance Imaging 21, 715–725 (2005)

    Article  Google Scholar 

  9. Bosc, M., Heitz, F., Armspach, J.P.: Statistical atlas-based sub-voxel segmentation of 3D brain MRI. In: International Conference on Image Processing - ICIP 2003, pp. 1077–1080 (2003)

    Google Scholar 

  10. Bosc, M., Vik, T., Armspach, J.P., Heitz, F.: ImLib3D: An efficient, open source, medical image processing framework in C++. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 981–982. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Passat, N., Ronse, C., Baruthio, J., Armspach, J.P., Bosc, M., Foucher, J. (2005). Using Multimodal MR Data for Segmentation and Topology Recovery of the Cerebral Superficial Venous Tree. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_8

Download citation

  • DOI: https://doi.org/10.1007/11595755_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics