Nothing Special   »   [go: up one dir, main page]

Skip to main content

Large-Scale Geospatial Indexing for Image-Based Retrieval and Analysis

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Abstract

We describe a method for indexing and retrieving high-resolution image regions in large geospatial data libraries. An automated feature extraction method is used that generates a unique and specific structural description of each segment of a tessellated input image file. These tessellated regions are then merged into similar groups and indexed to provide flexible and varied retrieval in a query-by-example environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tapley, B.D., Crawford, M.M., Howard, T., Hutchison, K.D., Smith, S.: A Vision for Creating Advanced Products From EOS Core System Data to Support Geospatial Applications in the State of Texas. In: International Geoscience and Remote Sensing Symposium, vol. 2, pp. 843–845 (2001)

    Google Scholar 

  2. You, J., Cheung, K.H., Liu, J., Guo, L.: On Hierarchical Content-Based Image Retrieval by Dynamic Indexing and Guided Search. In: Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia, vol. 5307, pp. 559–570 (2004)

    Google Scholar 

  3. Santini, S.: Exploratory Image Databases, Content-based Retrieval. Academic Press, San Fransisco (2001)

    Google Scholar 

  4. Vicario, E. (ed.): Image Description and Retrieval. Plenum Press, New York (1998)

    Google Scholar 

  5. Datcu, M., Daschiel, H., Pelizzari, A., Quartulli, M., Galoppo, A., Colapicchioni, A., Pastori, M., Seidel, K., Marchetti, P.G., D’Elia, S.: Information Mining in Remote Sensing Image archives: System Concepts. IEEE Trans. on Geoscience and Remote Sensing 41(12), 2923–2936 (2003)

    Article  Google Scholar 

  6. Schroder, M., Rehrauer, H., Seidel, K., Datcu, M.: Interactive Learning and Probabilistic Retrieval in Remote Sensing Image archives. IEEE Trans. on Geoscience and Remote Sensing 28(5), 2288–2298 (2000)

    Article  Google Scholar 

  7. Potok, T., Elmore, M., Reed, J., Sheldon, F.T.: VIPAR: Advanced Information Agents Discovering Knowledge in an Open and Changing Environment. In: Proc. 7th World Multiconference on Systemics, Cybernetics and Informatics, Orlando FL, July 27-30, pp. 28–33 (2003)

    Google Scholar 

  8. Bingham, P.R., Price, J.R., Tobin, K.W., Karnowski, T.P.: Semiconductor Sidewall Shape Estimation. SPIE Journal of Electronic Imaging 13(3) (July 2004)

    Google Scholar 

  9. Tobin, K.W., Karnowski, T.P., Arrowood, L.F., Ferrell, R.K., Goddard, J.S., Lakhani, F.: Content-based Image Retrieval for Semiconductor Process Characterization. EURASIP Journal on Applied Signal Processing, Special Issue on Applied Visual Inspection 2002(7) (2002)

    Google Scholar 

  10. Harvey, N.R., Theiler, J., Brumby, S.P., Perkins, S., Szymanski, J.J., Bloch, J.J., Porter, R.B., Galassi, M., Young, C.: Comparison of GENIE and Conventional Supervised Classifiers for Multispectral Image Feature Extraction. IEEE Transactions on Geoscience and Remote Sensing 40(2), 393–404 (2002)

    Article  Google Scholar 

  11. Pietikainen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recognition 33(1), 43–52 (2000)

    Article  Google Scholar 

  12. Yao, C.-H., Chen, S.-Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recognition 36(4), 913–929 (2003)

    Article  MathSciNet  Google Scholar 

  13. Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

    Article  Google Scholar 

  14. Tuttle, M., Pace, P.: ORNL Basemapping and Imagery Project: Data Collection, Processing, and Dissemination. In: Geographic Information System (GIS) Environmental management conference, Reno, NV, CONF-9603148-1 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tobin, K.W. et al. (2005). Large-Scale Geospatial Indexing for Image-Based Retrieval and Analysis. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_66

Download citation

  • DOI: https://doi.org/10.1007/11595755_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics