Abstract
We present a vectorial self dual morphological filter. Contrary to many methods, our approach does not require the use of an ordering on vectors. It relies on the minimization of the total variation with L 1 norm as data fidelity on each channel. We further constraint this minimization in order not to create new values. It is shown that this minimization yields a self-dual and contrast invariant filter. Although the above minimization is not a convex problem, we propose an algorithm which computes a global minimizer. This algorithm relies on minimum cost cut-based optimizations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78(4), 678–689 (1990)
Blomgren, P., Chan, T.F.: Color tv: Total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing 7(3), 304–309 (1998)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)
Caselles, V., Coll, B., Morel, J.-M.: Geometry and color in natural images. Journal Mathematical Imaging and Vision 16(2), 89–105 (2002)
Chambolle, A.: Partial differential equations and image processing. In: In the proceedings of the fourth IEEE International Conference on Image Processing (ICIP 1994), pp. 16–20 (1994)
Darbon, J.: Total variation minimization with L 1 data fidelity as a contrast invariant filter. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia (September 2005)
Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 351–359. Springer, Heidelberg (2005)
d’Ornellas, M.C., Van Den Boomgaard, R., Geusebroek, J.-M.: Morphological algorithms for color images based on a generic-programming approach. In: Brazilian Conf. on Image Processing and Computer Graphics (SIBGRAPI 1998), pp. 220–228 (1998)
Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
Goutsias, J., Heijman, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 63(2), 326–346 (1995)
Guichard, F., Morel, J.-M.: Image Iterative Smoothing and PDE s (2000), downloadable manuscript: please write email to http://fguichard@poseidon-tech.com
Guichard, F., Morel, J.M.: Mathematical morphology almost everywhere. In: Proceedings of ISMM, April 2002, pp. 293–303. Csiro Publishing (2002)
Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10(12), 1842–1850 (2001)
Lukac, R.: Adaptive vector median filter. Pattern Recognition Letters 24(12), 1889–1899 (2003)
Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Selection weighted vector directional filters. Computer Vision and Image Understanding 94(1-3), 140–167 (2004)
Ma, Z., Wu, H.R.: Classification based adaptive vector filter for color image restoration. In: Proceedings of the IEEE International Conference on Acoustics (2005)
Murota, K.: Discrete Convex Optimization. SIAM Society for Industrial and Applied Mathematics (2003)
Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Application. Springer, Heidelberg (2000)
Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1988)
Serra, J.: Anamorphoses and Function lattices. In: Mathematical Morphology in Image Processing, pp. 483–523. Marcel-Dekker, New York (1992)
Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition. Technical report, UCLA, avril (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Darbon, J., Peyronnet, S. (2005). A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_47
Download citation
DOI: https://doi.org/10.1007/11595755_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30750-1
Online ISBN: 978-3-540-32284-9
eBook Packages: Computer ScienceComputer Science (R0)