Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization

  • Conference paper
Advances in Visual Computing (ISVC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3804))

Included in the following conference series:

Abstract

We present a vectorial self dual morphological filter. Contrary to many methods, our approach does not require the use of an ordering on vectors. It relies on the minimization of the total variation with L 1 norm as data fidelity on each channel. We further constraint this minimization in order not to create new values. It is shown that this minimization yields a self-dual and contrast invariant filter. Although the above minimization is not a convex problem, we propose an algorithm which computes a global minimizer. This algorithm relies on minimum cost cut-based optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78(4), 678–689 (1990)

    Article  Google Scholar 

  2. Blomgren, P., Chan, T.F.: Color tv: Total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing 7(3), 304–309 (1998)

    Article  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Caselles, V., Coll, B., Morel, J.-M.: Geometry and color in natural images. Journal Mathematical Imaging and Vision 16(2), 89–105 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chambolle, A.: Partial differential equations and image processing. In: In the proceedings of the fourth IEEE International Conference on Image Processing (ICIP 1994), pp. 16–20 (1994)

    Google Scholar 

  6. Darbon, J.: Total variation minimization with L 1 data fidelity as a contrast invariant filter. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia (September 2005)

    Google Scholar 

  7. Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 351–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. d’Ornellas, M.C., Van Den Boomgaard, R., Geusebroek, J.-M.: Morphological algorithms for color images based on a generic-programming approach. In: Brazilian Conf. on Image Processing and Computer Graphics (SIBGRAPI 1998), pp. 220–228 (1998)

    Google Scholar 

  9. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Goutsias, J., Heijman, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 63(2), 326–346 (1995)

    Article  Google Scholar 

  11. Guichard, F., Morel, J.-M.: Image Iterative Smoothing and PDE s (2000), downloadable manuscript: please write email to http://fguichard@poseidon-tech.com

    Google Scholar 

  12. Guichard, F., Morel, J.M.: Mathematical morphology almost everywhere. In: Proceedings of ISMM, April 2002, pp. 293–303. Csiro Publishing (2002)

    Google Scholar 

  13. Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Transactions on Image Processing 10(12), 1842–1850 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lukac, R.: Adaptive vector median filter. Pattern Recognition Letters 24(12), 1889–1899 (2003)

    Article  Google Scholar 

  15. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Selection weighted vector directional filters. Computer Vision and Image Understanding 94(1-3), 140–167 (2004)

    Article  Google Scholar 

  16. Ma, Z., Wu, H.R.: Classification based adaptive vector filter for color image restoration. In: Proceedings of the IEEE International Conference on Acoustics (2005)

    Google Scholar 

  17. Murota, K.: Discrete Convex Optimization. SIAM Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  18. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Application. Springer, Heidelberg (2000)

    Google Scholar 

  19. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  20. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1988)

    Google Scholar 

  21. Serra, J.: Anamorphoses and Function lattices. In: Mathematical Morphology in Image Processing, pp. 483–523. Marcel-Dekker, New York (1992)

    Google Scholar 

  22. Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition. Technical report, UCLA, avril (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Darbon, J., Peyronnet, S. (2005). A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds) Advances in Visual Computing. ISVC 2005. Lecture Notes in Computer Science, vol 3804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11595755_47

Download citation

  • DOI: https://doi.org/10.1007/11595755_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30750-1

  • Online ISBN: 978-3-540-32284-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics