Abstract
We consider the problem of computing the expected accumulated reward and the average gain per transition in a subclass of Markov chains with countable state spaces where all states are assigned a non-negative reward. We state several abstract conditions that guarantee computability of the above properties up to an arbitrarily small (but non-zero) given error. Finally, we show that our results can be applied to probabilistic lossy channel systems, a well-known model of processes communicating through faulty channels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P., Henda, N.B., Mayr, R.: Verifying infinite Markov chains with a finite attractor or the global coarseness property. In: Proceedings of LICS 2005, pp. 127–136. IEEE, Los Alamitos (2005)
Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. I&C 127(2), 91–101 (1996)
Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer, Heidelberg (2003)
Baier, C., Engelen, B.: Establishing qualitative properties for probabilistic lossy channel systems: an algorithmic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 34–52. Springer, Heidelberg (1999)
Bertrand, N., Schnoebelen, P.: Model checking lossy channel systems is probably decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg (2003)
Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)
Brázdil, T., Esparza, J., Kučera, A.: Analysis and prediction of the long-run behavior of probabilistic sequential programs with recursion. In: Proceedings of FOCS 2005, IEEE, Los Alamitos (2005) (to appear)
Brázdil, T., Kučera, A.: Computing the expected accumulated reward and gain for a subclass of infinite markov chains. Technical report FIMU-RS-2005-10, Faculty of Informatics, Masaryk University (2005)
Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)
Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilistic programs. In: Proceedings of FOCS 1988, pp. 338–345. IEEE, Los Alamitos (1988)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4), 857–907 (1995)
de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D., Segala, R.: Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000)
Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown automata. In: Proceedings of LICS 2004, pp. 12–21. IEEE, Los Alamitos (2004)
Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown automata: Expectations and variances. In: Proceedings of LICS 2005, pp. 117–126. IEEE, Los Alamitos (2005)
Etessami, K., Yannakakis, M.: Algorithmic verification of recursive probabilistic systems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 253–270. Springer, Heidelberg (2005)
Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of non-linear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 340–352. Springer, Heidelberg (2005)
Cho, E., Meyer, C.D.: Markov chain sensitivity measured by mean first passage times. Linear Algebra and its Applications 316(1-3), 21–28 (2000)
Iyer, S.P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997)
Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: Proceedings of LICS 2003, pp. 351–360. IEEE, Los Alamitos (2003)
Puterman, M.: Markov Decision Processes. John Wiley and Sons, Chichester (1994)
Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)
Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American Mathematical Society, Providence (2004)
Schnoebelen, P.: The verification of probabilistic lossy channel systems. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 445–465. Springer, Heidelberg (2004)
Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brázdil, T., Kučera, A. (2005). Computing the Expected Accumulated Reward and Gain for a Subclass of Infinite Markov Chains. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_30
Download citation
DOI: https://doi.org/10.1007/11590156_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30495-1
Online ISBN: 978-3-540-32419-5
eBook Packages: Computer ScienceComputer Science (R0)