Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reachability of Hennessy-Milner Properties for Weakly Extended PRS

  • Conference paper
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2005)

Abstract

We examine the problem whether a given weakly extended process rewrite system (wPRS) contains a reachable state satisfying a given formula of Hennessy–Milner logic. We show that this problem is decidable. As a corollary we observe that the problem of strong bisimilarity between wPRS and finite-state systems is decidable. Decidability of the same problem for wPRS subclasses, namely PAN and PRS, has been formulated as an open question, see e.g. [Srb02]. We also strengthen some related undecidability results on some PRS subclasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta Informatica 20(3), 207–226 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  3. Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxonomy. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 247–262. Springer, Heidelberg (1996)

    Google Scholar 

  4. Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonregular properties for nonregular processes. In: Proc. of LICS 1995, IEEE, Los Alamitos (1995)

    Google Scholar 

  5. Caucal, D.: On the regular structure of prefix rewriting. Theor. Comput. Sci. 106, 61–86 (1992)

    Article  MathSciNet  Google Scholar 

  6. Esparza, J., Kiehn, A.: On the model checking problem for branching time logics and basic parallel processes. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 353–366. Springer, Heidelberg (1995)

    Google Scholar 

  7. Esparza, J.: On the decidability of model checking for several mu-calculi and petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Esparza, J.: Decidability of model checking for infinite-state concurrent systems. Acta Informatica 34(2), 85–107 (1997)

    Article  MathSciNet  Google Scholar 

  9. Esparza, J.: Grammars as processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, p. 277. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hirshfeld, Y., Moller, F.: Pushdown automata, multiset automata, and petri nets. Theor. Comput. Sci. 256(1-2), 3–21 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theor. Comput. Sci. 148(2), 281–301 (1995)

    Article  MATH  Google Scholar 

  12. Jančar, P.: Strong bisimilarity on basic parallel processes is PSPACE complete. In: Proc. of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 218–227. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  13. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state processes. Theor. Comput. Sci. 258, 409–433 (2001)

    Article  MATH  Google Scholar 

  14. Jancar, P., Moller, F.: Checking regular properties of petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 348–362. Springer, Heidelberg (1995)

    Google Scholar 

  15. Kučera, A., Jančar, P.: Equivalence-checking with infinite-state systems: Techniques and results. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 41–73. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Křetínský, M., Řehák, V., Strejček, J.: Extended process rewrite systems: Expressiveness and reachability. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 355–370. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Křetínský, M., Řehák, V., Strejček, J.: On extensions of process rewrite systems: Rewrite systems with weak finite-state unit. In: Proceedings of INFINITY 2003. ENTCS, vol. 98, pp. 75–88. Elsevier, Amsterdam (2004)

    Google Scholar 

  18. Kučera, A., Schnoebelen, P.: A general approach to comparing infinite state systems with their finite-state specifications. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 371–386. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Systems. Ph.D thesis, Technische UniversitätMünchen (1998)

    Google Scholar 

  20. Mayr, R.: Process rewrite systems. Information and Computation 156(1), 264–286 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  22. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

    Google Scholar 

  23. Mayr, R., Rusinowitch, M.: Reachability is decidable for ground AC rewrite systems. In: Proceedings of INFINITY 1998 workshop (1998)

    Google Scholar 

  24. Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51–75 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Muller, D., Saoudi, A., Schupp, P.: Alternating automata, the weak monadic theory of trees and its complexity. Theor. Comput. Sci. 97(1– 2), 233–244 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Srba, J.: Roadmap of infinite results. EATCS Bulletin (78), 163–175 (2002), http://www.brics.dk/~srba/roadmap/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Křetínský, M., Řehák, V., Strejček, J. (2005). Reachability of Hennessy-Milner Properties for Weakly Extended PRS. In: Sarukkai, S., Sen, S. (eds) FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2005. Lecture Notes in Computer Science, vol 3821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590156_17

Download citation

  • DOI: https://doi.org/10.1007/11590156_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30495-1

  • Online ISBN: 978-3-540-32419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics