Nothing Special   »   [go: up one dir, main page]

Skip to main content

Surveying the Reality of Semantic Image Retrieval

  • Conference paper
Visual Information and Information Systems (VISUAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3736))

Included in the following conference series:

Abstract

An ongoing project is described which seeks to add to our understanding about the real challenge of semantic image retrieval. Consideration is given to the plurality of types of still image, a taxonomy for which is presented as a framework within which to show examples of real ‘semantic’ requests and the textual metadata by which such requests might be addressed. The specificity of subject indexing and underpinning domain knowledge which is necessary in order to assist in the realization of semantic content is noted. The potential for that semantic content to be represented and recovered using CBIR techniques is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eakins, J.P., Graham, M.E.: Content-based Image Retrieval. A report to the JISC Technology Applications Programme. In: Institute for Image Data Research. University of Northumbria at Newcastle, Newcastle upon Tyne (1999)

    Google Scholar 

  2. Gudivada, V.N., Raghavan, V.V.: Content-based image retrieval systems. IEEE Computer 28(9), 18–22 (1995)

    Google Scholar 

  3. Greisdorf, H., O’Connor, B.: Modelling what users see when they look at images: a cognitive viewpoint. Journal of Documentation 58(1), 6–29 (2002)

    Article  Google Scholar 

  4. Jőrgensen, C.: Image retrieval: theory and research. The Scarecrow Press, Lanham (2003)

    Google Scholar 

  5. Trant, J.: Image Retrieval Benchmark database Service: a Needs Assessment and Prelimi-nary development Plan: a report prepared for the Council on Library and Information Re-sources and the Coalition for Networked Information (2004), http://www.clir.org/pubs/reports/trant04/tranttext.pdf

  6. Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures (undated), http://ciip.cs.umass.edu/pubfiles/mm-46.pdf

  7. Brodatz, P.: Textures: a photographic album for artists and designers. Dover, New York (1966)

    Google Scholar 

  8. Edina: Education Image Gallery, http://edina.ac.uk/eig/

  9. Jőrgensen, C.: Indexing images: testing an image description template. Paper given at the ASIS, Annual Conference, October 19-24, (1996), http://www.asis.org/annual-96/ElectronicProceedings/jorgensen.html

  10. Rui, Y., Huang, T.S., Chang, S.-F.: Image Retrieval: Current Techniques, Promising Direc-tions, and Open Issues. Journal of Visual Communication and Image Representation 10(4), 39–62 (1999)

    Article  Google Scholar 

  11. Marr, D.: Vision. Freeman, New York (1982)

    Google Scholar 

  12. Enser, P.G.B.: Pictorial Information Retrieval (Progress in Documentation). Journal of Documentation 51(2), 126–170 (1995)

    Article  Google Scholar 

  13. Armitage, L.H., Enser, P.G.B.: Analysis of user need in image archives. Journal of In-formation Science 23(4), 287–299 (1997)

    Article  Google Scholar 

  14. Ornager, S.: The newspaper image database: empirical supported analysis of users’ typol-ogy and word association clusters. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) SIGIR 95, Proceedings of the 18th International AGM SIGIR, pp. 212–218. ACM, New York (1995)

    Google Scholar 

  15. Enser, P., Sandom, C.: Retrieval of Archival Moving Imagery - CBIR Outside the Frame? In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 202–214. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Markkula, M., Sormunen, E.: End-user Searching Challenges Indexing Practices in the Digital Newspaper Photo Archive. Information Retrieval 1(4), 259–285 (2000)

    Article  MATH  Google Scholar 

  17. Conniss, L.R., Ashford, L.R., Graham, M.E.: Information Seeking Behaviour in Image Re-trieval. VISOR 1 Final Report. Library and Information Commission Research Report 95. Institute for Image Data Research, University of Northumbria at Newcastle’ Newcastle upon Tyne (2000)

    Google Scholar 

  18. Wellcome Trust: Medical Photographic Library, http://medphoto.wellcome.ac.uk

  19. Hu, B., Dasmahapatra, S., Lewis, P., Shadbolt, N.: Ontology-based Medical Image Annotation with Description Logics. In: Proceedings of The 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA (2003)

    Google Scholar 

  20. Science & Society Picture Library, http://www.scienceandsociety.co.uk

  21. Hauptmann, A., Ng, T.D., Jin, R.: Video retrieval using speech and image information. In: Proceedings of Electronic Imaging Conference (EI 2003), Santa Clara, CA, USA. Storage Retrieval for Multime-dia Databases (2003), http://www.informedia.cs.cmu.edu/documents/ei03_haupt.pdf

  22. Eakins, J.P.: Design criteria for a shape retrieval system. Computers in Industry 21, 167–184 (1993)

    Article  Google Scholar 

  23. Corporation of London: Talisweb, http://librarycatalogue.cityoflondon.gov.uk:8001/

  24. Eakins, J.P., Boardman, J.M., Graham, M.E.: Similarity retrieval of trademark images. IEEE Multimedia 5(2), 53–63 (1998)

    Article  Google Scholar 

  25. Bridgeman Art Library: Bridgeman Art Library – a fine art photographic archive, http://www.bridgeman.co.uk/index.asp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Enser, P.G.B., Sandom, C.J., Lewis, P.H. (2006). Surveying the Reality of Semantic Image Retrieval. In: Bres, S., Laurini, R. (eds) Visual Information and Information Systems. VISUAL 2005. Lecture Notes in Computer Science, vol 3736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11590064_16

Download citation

  • DOI: https://doi.org/10.1007/11590064_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30488-3

  • Online ISBN: 978-3-540-32339-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics