Abstract
Security in telemedicine systems might be considered a particularly sensitive subject due to the type of confidential information generally handled and the responsibilities consequently derived. In this work we focus on detecting attempts of gaining unauthorised access to a telemedicine web application. We introduce a new Text Mining module that by using Text Categorisation of the web application server log entries is capable of learning the characteristics of both normal and malicious user behaviour. As a result, the detection of misuse in the web application is achieved without the need of explicit programming hence improving the system maintainability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sobrado, J.F., Pikatza, J.M., Larburu, I.U., García Adeva, J.J., de Lopez Ipiña, D.: Towards a clinical practice guideline implementation for asthma treatment. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 587–596. Springer, Heidelberg (2004)
Pikatza, J.M., Larburu, I.U., Sobrado, F.J., Adeva, J.J.G.: Arnasa: una forma de desarrollo basado en el dominio en la construcción de un DSS para la gestión del proceso de tratamiento del asma vía Web. In: 7th Software Engineering and Data Bases Conference (JISBD), Madrid, Spain (2002)
Parliament, E.: Directives 97/46/CE and 97/66/CE (1997)
de Administraciones Públicas, M.: Ley orgánica 15/1999, de 13 de diciembre, de protección de datos de carácter personal (1999)
Lee, W., Stolfo, S.: Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX Security Symposium, San Antonio, TX (1998)
Barbara, D., Couto, J., Jajodia, S., Wu, N.: Adam: a testbed for exploring the use of data mining in intrusion detection. In: Special section on data mining for intrusion detection and threat analysis, vol. 30-4, pp. 15–24. ACM Press, New York (2001)
Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998)
Moschitti, A.: A study on optimal parameter tuning for Rocchio Text Classifier. In: Proceedings of the 25th European Conference on Information Retrieval Research (2003)
Yang, Y., Chute, C.G.: An example-based mapping method for text categorization and retrieval. ACM Trans. Inf. Syst. 12, 252–277 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adeva, J.J.G., Pikatza, J.M., Flórez, S., Sobrado, F.J. (2005). Intrusion Detection Using Text Mining in a Web-Based Telemedicine System. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_131
Download citation
DOI: https://doi.org/10.1007/11589990_131
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30462-3
Online ISBN: 978-3-540-31652-7
eBook Packages: Computer ScienceComputer Science (R0)