Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intrusion Detection Using Text Mining in a Web-Based Telemedicine System

  • Conference paper
AI 2005: Advances in Artificial Intelligence (AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3809))

Included in the following conference series:

  • 2498 Accesses

Abstract

Security in telemedicine systems might be considered a particularly sensitive subject due to the type of confidential information generally handled and the responsibilities consequently derived. In this work we focus on detecting attempts of gaining unauthorised access to a telemedicine web application. We introduce a new Text Mining module that by using Text Categorisation of the web application server log entries is capable of learning the characteristics of both normal and malicious user behaviour. As a result, the detection of misuse in the web application is achieved without the need of explicit programming hence improving the system maintainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sobrado, J.F., Pikatza, J.M., Larburu, I.U., García Adeva, J.J., de Lopez Ipiña, D.: Towards a clinical practice guideline implementation for asthma treatment. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 587–596. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Pikatza, J.M., Larburu, I.U., Sobrado, F.J., Adeva, J.J.G.: Arnasa: una forma de desarrollo basado en el dominio en la construcción de un DSS para la gestión del proceso de tratamiento del asma vía Web. In: 7th Software Engineering and Data Bases Conference (JISBD), Madrid, Spain (2002)

    Google Scholar 

  3. Parliament, E.: Directives 97/46/CE and 97/66/CE (1997)

    Google Scholar 

  4. de Administraciones Públicas, M.: Ley orgánica 15/1999, de 13 de diciembre, de protección de datos de carácter personal (1999)

    Google Scholar 

  5. Lee, W., Stolfo, S.: Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX Security Symposium, San Antonio, TX (1998)

    Google Scholar 

  6. Barbara, D., Couto, J., Jajodia, S., Wu, N.: Adam: a testbed for exploring the use of data mining in intrusion detection. In: Special section on data mining for intrusion detection and threat analysis, vol. 30-4, pp. 15–24. ACM Press, New York (2001)

    Google Scholar 

  7. Lewis, D.D.: Naive (Bayes) at forty: The independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Moschitti, A.: A study on optimal parameter tuning for Rocchio Text Classifier. In: Proceedings of the 25th European Conference on Information Retrieval Research (2003)

    Google Scholar 

  9. Yang, Y., Chute, C.G.: An example-based mapping method for text categorization and retrieval. ACM Trans. Inf. Syst. 12, 252–277 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adeva, J.J.G., Pikatza, J.M., Flórez, S., Sobrado, F.J. (2005). Intrusion Detection Using Text Mining in a Web-Based Telemedicine System. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_131

Download citation

  • DOI: https://doi.org/10.1007/11589990_131

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30462-3

  • Online ISBN: 978-3-540-31652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics